Source code for aviary.interface.methods_for_level2

import csv
import json
import os
import warnings
from copy import deepcopy
from datetime import datetime
from enum import Enum
from pathlib import Path

import dymos as dm
import numpy as np
import openmdao
import openmdao.api as om
from openmdao.utils.reports_system import _default_reports
from openmdao.utils.units import convert_units
from packaging import version

from aviary.core.aviary_group import AviaryGroup
from aviary.interface.utils import set_warning_format
from aviary.utils.aviary_values import AviaryValues
from aviary.utils.csv_data_file import write_data_file
from aviary.utils.functions import convert_strings_to_data, get_path
from aviary.utils.merge_variable_metadata import merge_meta_data
from aviary.utils.named_values import NamedValues
from aviary.variable_info.enums import EquationsOfMotion, LegacyCode, ProblemType, Verbosity
from aviary.variable_info.functions import setup_model_options
from aviary.variable_info.variable_meta_data import _MetaData as BaseMetaData
from aviary.variable_info.variables import Aircraft, Dynamic, Mission, Settings

FLOPS = LegacyCode.FLOPS
GASP = LegacyCode.GASP


[docs] class AviaryProblem(om.Problem): """ Main class for instantiating, formulating, and solving Aviary problems. On a basic level, this problem object is all the conventional user needs to interact with. Looking at the three "levels" of use cases, from simplest to most complicated, we have: Level 1: users interact with Aviary through input files (.csv or .yaml, TBD) Level 2: users interact with Aviary through a Python interface Level 3: users can modify Aviary's workings through Python and OpenMDAO This Problem object is simply a specialized OpenMDAO Problem that has additional methods to help users create and solve Aviary problems. """
[docs] def __init__( self, problem_type: ProblemType = None, verbosity=None, meta_data=BaseMetaData.copy(), **kwargs, ): # Modify OpenMDAO's default_reports for this session. new_reports = [ 'subsystems', 'mission', 'timeseries_csv', 'run_status', 'sizing_results', 'input_checks', ] for report in new_reports: if report not in _default_reports: _default_reports.append(report) super().__init__(**kwargs) self.timestamp = datetime.now() # If verbosity is set to anything but None, this defines how warnings are formatted for the # whole problem - warning format won't be updated if user requests a different verbosity # level for a specific method self.verbosity = verbosity set_warning_format(verbosity) self.problem_type = problem_type if problem_type == ProblemType.MULTI_MISSION: self.model = om.Group() else: self.model = AviaryGroup() self.aviary_inputs = None self.aviary_groups_dict = {} self.meta_data = meta_data # TODO try and find a better solution than a new custom flag - the issue is multimission # problems don't have a consistent variable path to check the inputs later on self.generate_payload_range = False
[docs] def load_inputs( self, aircraft_data, phase_info=None, engine_builders=None, problem_configurator=None, meta_data=None, verbosity=None, ): """ This method loads the aviary_values inputs and options that the user specifies. They could specify files to load and values to replace here as well. Phase info is also loaded if provided by the user. If phase_info is None, the appropriate default phase_info based on mission analysis method is used. This method is not strictly necessary; a user could also supply an AviaryValues object and/or phase_info dict of their own. """ # We haven't read the input data yet, we don't know what desired run verbosity is # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # usually None if meta_data is not None: # Support for custom meta_data set. self.meta_data = meta_data # TODO: We cannot pass self.verbosity back up from load inputs for multi-mission because there could be multiple .csv files self.model.meta_data = self.meta_data aviary_inputs, verbosity = self.model.load_inputs( aircraft_data=aircraft_data, phase_info=phase_info, engine_builders=engine_builders, problem_configurator=problem_configurator, verbosity=verbosity, ) self.aviary_inputs = aviary_inputs self.verbosity = verbosity if self.problem_type is None: # if there are multiple load_inputs() calls, only the problem type from the first aviary_values is used self.problem_type = aviary_inputs.get_val(Settings.PROBLEM_TYPE) # TODO try and find a better solution than a new custom flag - the issue is multimission # problems don't have a consistent variable path to check the inputs later on # BUG you can't specify generating payload-range diagram via aviary_inputs after load_inputs if Settings.PAYLOAD_RANGE in aviary_inputs: self.generate_payload_range = aviary_inputs.get_val(Settings.PAYLOAD_RANGE) return self.aviary_inputs
[docs] def check_and_preprocess_inputs(self, verbosity=None): """ This method checks the user-supplied input values for any potential problems and preprocesses the inputs to prepare them for use in the Aviary problem. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.check_and_preprocess_inputs(verbosity=verbosity) # we have to update meta data after check_and_preprocess because metadata update # requires get_all_subsystems, which requires core_subsystems, which doesn't exist until # after check_and_preprocess is assembled self._update_metadata_from_subsystems(self.model) # update meta data with new entries
def _update_metadata_from_subsystems(self, group): """Merge metadata from user-defined subsystems into problem metadata.""" # loop through phase_info and external subsystems for phase_name in group.mission_info: external_subsystems = group.get_all_subsystems( group.mission_info[phase_name]['external_subsystems'] ) for subsystem in external_subsystems: meta_data = subsystem.meta_data.copy() self.meta_data = merge_meta_data([self.meta_data, meta_data]) # Update the reference to the newly merged meta_data. group.meta_data = self.meta_data
[docs] def add_aviary_group( self, name: str, aircraft: AviaryValues, mission: dict, engine_builders=None, problem_configurator=None, verbosity: Verbosity = Verbosity.BRIEF, ): """ Used for creating a multi-mission problem. This method creates an AviaryGroup() for each airraft and mission combination. It can also accept a specific engine_builder for each group. The method loads and checks_and_preprocesses inputs, and then combines metadata. Parameters ---------- name : string A unique name that identifies this group which can be referenced later. aircraft : AviaryValues object Defines the aircraft configuration mission : phase_info, dict Defines the mission the aircraft will fly engine_builders : EngineBuilder object, optional Defines a custom engine model problem_configurator ; ProblemConfigurator, optional Required when setting custom equations of motion. See two_dof_problem_configurator.py for an example. verbosity : Verbosity or int, optional Controls the level of printouts for this method. Returns ------- subsystem The AviaryGroup object containing the specified aircraft, mission, and engine model. """ if self.problem_type is not ProblemType.MULTI_MISSION: ValueError( 'add_aviary_group() should only be called when ProblemType is MULTI_MISSION.' ) sub = self.model.add_subsystem(name, AviaryGroup()) sub.meta_data = self.meta_data sub.load_inputs( aircraft_data=aircraft, phase_info=mission, engine_builders=engine_builders, problem_configurator=problem_configurator, verbosity=verbosity, ) sub.check_and_preprocess_inputs() self.aviary_groups_dict[name] = sub if self.verbosity is None: # If problem-level verbosity was not defined, use the verbosity specified in the first # added AviaryGroup self.verbosity = sub.verbosity # TODO try and find a better solution than a new custom flag - the issue is multimission # problems don't have a consistent variable path to check the inputs later on if Settings.PAYLOAD_RANGE in sub.aviary_inputs: self.generate_payload_range = sub.aviary_inputs.get_val(Settings.PAYLOAD_RANGE) self._update_metadata_from_subsystems(sub) # update meta data with new entries return sub
[docs] def add_pre_mission_systems(self, verbosity=None): """ Add pre-mission systems to the Aviary problem. These systems are executed before the mission. Depending on the mission model specified (`FLOPS` or `GASP`), this method adds various subsystems to the aircraft model. For the `FLOPS` mission model, a takeoff phase is added using the Takeoff class with the number of engines and airport altitude specified. For the `GASP` mission model, three subsystems are added: a TaxiSegment subsystem, an ExecComp to calculate the time to initiate gear and flaps, and an ExecComp to calculate the speed at which to initiate rotation. All subsystems are promoted with aircraft and mission inputs and outputs as appropriate. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if self.problem_type == ProblemType.MULTI_MISSION: for name, group in self.aviary_groups_dict.items(): group.add_pre_mission_systems(verbosity=verbosity) else: self.model.add_pre_mission_systems(verbosity=verbosity)
[docs] def add_phases( self, phase_info_parameterization=None, parallel_phases=True, verbosity=None, ): """ Add the mission phases to the problem trajectory based on the user-specified phase_info dictionary. Parameters ---------- phase_info_parameterization (function, optional): A function that takes in the phase_info dictionary and aviary_inputs and returns modified phase_info. Defaults to None. parallel_phases (bool, optional): If True, the top-level container of all phases will be a ParallelGroup, otherwise it will be a standard OpenMDAO Group. Defaults to True. Returns ------- <Trajectory> The Dymos Trajectory object containing the added mission phases. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if self.problem_type == ProblemType.MULTI_MISSION: for name, group in self.aviary_groups_dict.items(): Traj = group.add_phases( phase_info_parameterization=phase_info_parameterization, parallel_phases=parallel_phases, verbosity=verbosity, comm=self.comm, ) else: Traj = self.model.add_phases( phase_info_parameterization=phase_info_parameterization, parallel_phases=parallel_phases, verbosity=verbosity, comm=self.comm, ) return Traj
[docs] def add_post_mission_systems(self, verbosity=None): """ Add post-mission systems to the aircraft model. This is akin to the pre-mission group or the "premission_systems", but occurs after the mission in the execution order. Depending on the mission model specified (`FLOPS` or `GASP`), this method adds various subsystems to the aircraft model. For the `FLOPS` mission model, a landing phase is added using the Landing class with the wing area and lift coefficient specified, and a takeoff constraints ExecComp is added to enforce mass, range, velocity, and altitude continuity between the takeoff and climb phases. The landing subsystem is promoted with aircraft and mission inputs and outputs as appropriate, while the takeoff constraints ExecComp is only promoted with mission inputs and outputs. For the `GASP` mission model, four subsystems are added: a LandingSegment subsystem, an ExecComp to calculate the reserve fuel required, an ExecComp to calculate the overall fuel burn, and three ExecComps to calculate various mission objectives and constraints. All subsystems are promoted with aircraft and mission inputs and outputs as appropriate. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if self.problem_type == ProblemType.MULTI_MISSION: for name, group in self.aviary_groups_dict.items(): group.add_post_mission_systems(verbosity=verbosity) else: self.model.add_post_mission_systems(verbosity=verbosity)
[docs] def add_driver(self, optimizer=None, use_coloring=None, max_iter=50, verbosity=None): """ Add an optimization driver to the Aviary problem. Depending on the provided optimizer, the method instantiates the relevant driver (ScipyOptimizeDriver or pyOptSparseDriver) and sets the optimizer options. Options for 'SNOPT', 'IPOPT', and 'SLSQP' are specified. The method also allows for the declaration of coloring and setting debug print options. Parameters ---------- optimizer : str The name of the optimizer to use. It can be "SLSQP", "SNOPT", "IPOPT" or others supported by OpenMDAO. If "SLSQP", it will instantiate a ScipyOptimizeDriver, else it will instantiate a pyOptSparseDriver. use_coloring : bool, optional If True (default), the driver will declare coloring, which can speed up derivative computations. max_iter : int, optional The maximum number of iterations allowed for the optimization process. Default is 50. This option is applicable to "SNOPT", "IPOPT", and "SLSQP" optimizers. verbosity : Verbosity or int, optional Controls the level of printouts for this method. If None, uses the value of Settings.VERBOSITY in provided aircraft data. Returns ------- None """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF # Set defaults for optimizer and use_coloring if optimizer is None: optimizer = 'IPOPT' if use_coloring is None: use_coloring = True # check if optimizer is SLSQP if optimizer == 'SLSQP': driver = self.driver = om.ScipyOptimizeDriver() else: driver = self.driver = om.pyOptSparseDriver() driver.options['optimizer'] = optimizer if use_coloring: # define coloring options by verbosity if verbosity < Verbosity.VERBOSE: # QUIET, BRIEF driver.declare_coloring(show_summary=False) elif verbosity == Verbosity.VERBOSE: driver.declare_coloring(show_summary=True) else: # DEBUG driver.declare_coloring(show_summary=True, show_sparsity=True) if driver.options['optimizer'] == 'SNOPT': # Print Options # if verbosity == Verbosity.QUIET: isumm, iprint = 0, 0 elif verbosity == Verbosity.BRIEF: isumm, iprint = 6, 0 elif verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG isumm, iprint = 6, 9 driver.opt_settings['iSumm'] = isumm driver.opt_settings['iPrint'] = iprint # Optimizer Settings # driver.opt_settings['Major iterations limit'] = max_iter driver.opt_settings['Major optimality tolerance'] = 1e-4 driver.opt_settings['Major feasibility tolerance'] = 1e-6 elif driver.options['optimizer'] == 'IPOPT': # Print Options # if verbosity == Verbosity.QUIET: print_level = 0 driver.opt_settings['print_user_options'] = 'no' elif verbosity == Verbosity.BRIEF: print_level = 3 # minimum to get exit status driver.opt_settings['print_user_options'] = 'no' driver.opt_settings['print_frequency_iter'] = 10 elif verbosity == Verbosity.VERBOSE: print_level = 5 else: # DEBUG print_level = 7 driver.opt_settings['print_level'] = print_level # Optimizer Settings # driver.opt_settings['tol'] = 1.0e-6 driver.opt_settings['mu_init'] = 1e-5 driver.opt_settings['max_iter'] = max_iter # for faster convergence driver.opt_settings['nlp_scaling_method'] = 'gradient-based' driver.opt_settings['alpha_for_y'] = 'safer-min-dual-infeas' driver.opt_settings['mu_strategy'] = 'monotone' elif driver.options['optimizer'] == 'SLSQP': # Print Options # if verbosity == Verbosity.QUIET: disp = False else: disp = True driver.options['disp'] = disp # Optimizer Settings # driver.options['tol'] = 1e-9 driver.options['maxiter'] = max_iter # pyoptsparse print settings for both SNOPT, IPOPT if optimizer in ('SNOPT', 'IPOPT'): if verbosity == Verbosity.QUIET: driver.options['print_results'] = False elif verbosity < Verbosity.DEBUG: # QUIET, BRIEF, VERBOSE driver.options['print_results'] = 'minimal' elif verbosity >= Verbosity.DEBUG: driver.options['print_opt_prob'] = True # optimizer agnostic settings if verbosity == Verbosity.DEBUG: driver.options['debug_print'] = [ 'desvars', 'ln_cons', 'nl_cons', 'objs', ]
[docs] def add_design_variables(self, verbosity=None): """ Adds design variables to the Aviary problem. Depending on the mission model and problem type, different design variables and constraints are added. If using the FLOPS model, a design variable is added for the gross mass of the aircraft, with a lower bound of 10 lbm and an upper bound of 900,000 lbm. If using the GASP model, the following design variables are added depending on the mission type: - the initial thrust-to-weight ratio of the aircraft during ascent - the duration of the ascent phase - the time constant for the landing gear actuation - the time constant for the flaps actuation In addition, two constraints are added for the GASP model: - the initial altitude of the aircraft with gear extended is constrained to be 50 ft - the initial altitude of the aircraft with flaps extended is constrained to be 400 ft If solving a sizing problem, a design variable is added for the gross mass of the aircraft, and another for the gross mass of the aircraft computed during the mission. A constraint is also added to ensure that the residual range is zero. If solving an alternate problem, only a design variable for the gross mass of the aircraft computed during the mission is added. A constraint is also added to ensure that the residual range is zero. In all cases, a design variable is added for the final cruise mass of the aircraft, with no upper bound, and a residual mass constraint is added to ensure that the mass balances. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if self.problem_type == ProblemType.MULTI_MISSION: for name, group in self.aviary_groups_dict.items(): group.add_design_variables(problem_type=self.problem_type, verbosity=verbosity) else: self.model.add_design_variables(problem_type=self.problem_type, verbosity=verbosity)
[docs] def add_objective(self, objective_type=None, ref=None, verbosity=None): """ Add the objective function based on the given objective_type and ref. NOTE: the ref value should be positive for values you're trying to minimize and negative for values you're trying to maximize. Please check and double-check that your ref value makes sense for the objective you're using. Parameters ---------- objective_type : str The type of objective to add. Options are 'mass', 'hybrid_objective', 'fuel_burned', and 'fuel'. ref : float The reference value for the objective. If None, a default value will be used based on the objective type. Please see the `default_ref_values` dict for these default values. verbosity : Verbosity or int, optional Controls the level of printouts for this method. If None, uses the value of Settings.VERBOSITY in provided aircraft data. Raises ------ ValueError: If an invalid problem type is provided. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.add_subsystem( 'fuel_obj', om.ExecComp( 'reg_objective = overall_fuel/10000 + ascent_duration/30.', reg_objective={'val': 0.0, 'units': 'unitless'}, ascent_duration={'units': 's', 'shape': 1}, overall_fuel={'units': 'lbm'}, ), promotes_inputs=[ ('ascent_duration', Mission.Takeoff.ASCENT_DURATION), ('overall_fuel', Mission.Summary.TOTAL_FUEL_MASS), ], promotes_outputs=[('reg_objective', Mission.Objectives.FUEL)], ) # TODO: All references to self.model. will need to be updated self.model.add_subsystem( 'range_obj', om.ExecComp( 'reg_objective = -actual_range/1000 + ascent_duration/30.', reg_objective={'val': 0.0, 'units': 'unitless'}, ascent_duration={'units': 's', 'shape': 1}, actual_range={'val': self.model.target_range, 'units': 'NM'}, ), promotes_inputs=[ ('actual_range', Mission.Summary.RANGE), ('ascent_duration', Mission.Takeoff.ASCENT_DURATION), ], promotes_outputs=[('reg_objective', Mission.Objectives.RANGE)], ) # Dictionary for default reference values default_ref_values = { 'mass': -5e4, 'hybrid_objective': -5e4, 'fuel_burned': 1e4, 'fuel': 1e4, } # Check if an objective type is specified if objective_type is not None: ref = ref if ref is not None else default_ref_values.get(objective_type, 1) final_phase_name = self.model.regular_phases[-1] if objective_type == 'mass': self.model.add_objective( f'traj.{final_phase_name}.timeseries.{Dynamic.Vehicle.MASS}', index=-1, ref=ref, ) elif objective_type == 'time': self.model.add_objective( f'traj.{final_phase_name}.timeseries.time', index=-1, ref=ref ) elif objective_type == 'hybrid_objective': self._add_hybrid_objective(self.model.mission_info) self.model.add_objective('obj_comp.obj') elif objective_type == 'fuel_burned': self.model.add_objective(Mission.Summary.FUEL_BURNED, ref=ref) elif objective_type == 'fuel': self.model.add_objective(Mission.Objectives.FUEL, ref=ref) else: raise ValueError( f"{objective_type} is not a valid objective. 'objective_type' must " 'be one of the following: mass, time, hybrid_objective, ' 'fuel_burned, or fuel' ) else: # If no 'objective_type' is specified, we handle based on 'problem_type' # If 'ref' is not specified, assign a default value ref = ref if ref is not None else 1 if self.problem_type is ProblemType.SIZING: self.model.add_objective(Mission.Objectives.FUEL, ref=ref) elif self.problem_type is ProblemType.ALTERNATE: self.model.add_objective(Mission.Objectives.FUEL, ref=ref) elif self.problem_type is ProblemType.FALLOUT: # if ref > 0: # # Maximize range. # ref = -ref self.model.add_objective(Mission.Objectives.RANGE, ref=ref) else: raise ValueError(f'{self.problem_type} is not a valid problem type.')
[docs] def add_design_var_default( self, name: str, lower: float = None, upper: float = None, units: str = None, src_shape=None, default_val: float = None, ref: float = None, ): """ Add a design variable to the problem as well as initialized a default value for that design variable. The default value can be over-written after setup with prob.set_val() Parameters ---------- name : string A unique name that identifies this design variable. lower : float, optional The lowest value that the optimizer can choose for this design variable. upper : float, optional The largest value that the optimizer can choose for this design variable. src_shape : int or tuple, optional Assumed shape of any connected source or higher level promoted input. default_val : float or ndarray, optional The default value to be assigned to this design variable. ref : float or ndarray, optional Value of design var that scales to 1.0 in the driver. """ self.model.add_design_var(name=name, lower=lower, upper=upper, units=units, ref=ref) if default_val is not None: self.model.set_input_defaults( name=name, val=default_val, units=units, src_shape=src_shape )
[docs] def set_design_range(self, missions: list[str], range: str): # TODO: What happens if design range is specified in CSV??? should be able to access from group.aviary_values """ Used for multi-mission problems. This method finds the longest mission and sets its range as the design range for all AviaryGroups. design_range is used within Aviary for sizing subsystems (avionics and AC). This could be simpllified in the future if there was a single pre-mission for similar aircraft. Parameters ---------- missions : list[str] The names of all the missions instantiated via add_aviary_group() range : str The promoted name of the range variable. i.e. "Aircraft1.Range" """ matching_names = [ (name, group) for name, group in self.aviary_groups_dict.items() if name in missions ] design_range = [] # loop through all the phase_info and extract target ranges for name, group in matching_names: target_range, units = group.post_mission_info['target_range'] design_range.append(convert_units(target_range, units, 'nmi')) # TODO: loop through all the .csv files and extract Mission.Design.RANGE design_range_max = np.max(design_range) self.set_val(range, val=design_range_max, units='nmi')
[docs] def add_composite_objective(self, *args, ref: float = None): """ Creates composite_objective output by assemblin an ExecComp based on a variety of AviaryGroup outputs selected by the user. A number of different outputs from the same or different aricraft can be combined in this way such as creating an objective function based on fuel plus noise emissions. Each objective output should include a weight otherwise the weight will be assumed to be equal (i.e. fuel is equally important as reducing noise emissions). Parameters ---------- *args : a list of 3-tuple, 2-tuple, str. Or it can be left empty If 3-tuple: (model, output, weight) If 2-tuple: (model, output) or (output, weight) If 1-tuple: (output) or 'fuel', 'fuel_burned', 'mass', 'range', 'time' If empty, information will be populated based on problem_type: - If ProblemType = FALLOUT, objective = Mission.Objectives.RANGE - If ProblemType = Sizing or Alternate, objective = Mission.Objectives.FUEL Example inputs can be any of the following: ('fuel') (Mission.Summary.FUEL_BURNED) (Mission.Summary.FUEL_BURNED, Mission.Summary.CO2) ('model1', Mission.Summary.FUEL_BURNED) (Mission.Summary.FUEL_BURNED, 1.0) (Mission.Summary.FUEL_BURNED, 1.0), (Mission.Summary.CO2, 2.0) ('model1', Mission.Summary.FUEL_BURNED), ('model2', Mission.Summary.CO2) ('model1', Mission.Summary.FUEL_BURNED, 1.0), ('model2', Mission.Summary.CO2, 2.0) ref : float, optional Reference value for the final objective for scaling. Behavior -------- - Connects each specified mission output into a newly created `ExecComp` block. - Computes a weighted sum: each output is weighted by both the total weights - Adds the result as the final objective named `'composite_objective'`, accessible at the top level model. """ # There are LOTS of different ways for the users to input str, 2-tuple, or 3-tuple into *args # Correct combinations are (output), (output, weight), (model, output), or (model, output, weight). # We have to catch every case and advise the user on how to corect their errors and add defaults as needed. default_model = 'model' default_weight = 1.0 objectives = [] for arg in args: if isinstance(arg, tuple) and len(arg) == 3: model, output, weight = arg if model not in self.aviary_groups_dict: raise ValueError( f'The first element specified in {arg} must be the model name.' ) elif isinstance(arg, tuple) and len(arg) == 2: first, second = arg if isinstance(first, str) and isinstance(second, str): if first in self.aviary_groups_dict: # we have the model and output but no weight model, output, weight = first, second, default_weight else: raise ValueError( f'The first element specified in {arg} must be the model name.' ) elif isinstance(first, str) and isinstance(second, (float, int)): if first in self.aviary_groups_dict: raise ValueError( f'When specifying {arg}, the user specified a model name and a weight ' f'but did not specify what output from that model the weight should be applied to.' ) else: # we have the output and the weight but not model model, output, weight = default_model, first, second else: raise ValueError( f'The user specified {arg} which is not a 2-tuple of (model, output) or (output, weight).' ) elif isinstance(arg, str): if arg in self.aviary_groups_dict: raise ValueError( f"When specifying '{arg}', the user provided only a model name " f'but did not specify what output from that model should be used as the objective.' ) else: # we have an output and we use the default model and weights model, output, weight = default_model, arg, default_weight # in some cases the users provides no input and we can derive the objectie from the problem type: elif self.model.problem_type is ProblemType.SIZING: model, output, weight = default_model, Mission.Objectives.FUEL, default_weight elif self.model.problem_type is ProblemType.ALTERNATE: model, output, weight = default_model, Mission.Objectives.FUEL, default_weight elif self.model.problem_type is ProblemType.FALLOUT: model, output, weight = default_model, Mission.Objectives.RANGE, default_weight else: raise ValueError( f'Unrecognized objective format: {arg}. ' f'Each argument must be one of the following: ' f'(output), (output, weight), (model, output), or (model, output, weight).' f'Outputs can be from the variable meta data, or can be: fuel_burned, fuel' f'Or problem type must be set to SIZING, ALTERNATE, or FALLOUT' ) objectives.append((model, output, weight)) # objectives = [ # ('model1', Mission.Summary.FUEL_BURNED, 1), # ('model2', Mission.Summary.CO2, 1), # ... # ] # Dictionary for default reference values default_ref_values = { 'mass': -5e4, 'hybrid_objective': -5e4, 'fuel_burned': 1e4, 'fuel': 1e4, } # Now checkout the output and see if we have recognizable strings and replace them with the variable meta data name objectives_cleaned = [] for model, output, weight in objectives: if output == 'fuel_burned': output = Mission.Summary.FUEL_BURNED # default scaling is valid only if this is the only argument and the ref has not yet been set if len(args) == 1 and ref == None: # set a default ref ref = default_ref_values['fuel_burned'] elif output == 'fuel': output = Mission.Objectives.FUEL if len(args) == 1 and ref == None: ref = default_ref_values['fuel'] elif output == 'mass': output = Mission.Summary.FINAL_MASS if len(args) == 1 and ref == None: ref = default_ref_values['mass'] elif output == 'time': output = Mission.Summary.FINAL_TIME elif output == 'range': output = Mission.Summary.RANGE # Unsure if this will work objectives_cleaned.append((model, output, weight)) # Create the calculation string for the ExecComp() and the promotion reference values weighted_exprs = [] connection_names = [] obj_inputs = [] total_weight = sum(weight for _, _, weight in objectives_cleaned) for model, output, weight in objectives_cleaned: output_safe = output.replace(':', '_') # we use "_" here because ExecComp() cannot intake "." obj_input = f'{model}_{output_safe}' obj_inputs.append(obj_input) weighted_exprs.append(f'{obj_input}*{weight}/{total_weight}') connection_names.append( [f'{model}.{output}', f'composite_function.{model}_{output_safe}'] ) final_expr = ' + '.join(weighted_exprs) # weighted_str looks like: 'model1_fuelburn*0.67*0.5 + model1_gross_mass*0.33*0.5 + model2_fuelburn*0.67*0.5 + model2_gross_mass*0.33*0.5' kwargs = {} if version.parse(openmdao.__version__) >= version.parse('3.40'): # We can get the correct unit from the source. This prevents a warning. kwargs = {k: {'units_by_conn': True} for k in obj_inputs} # adding composite execComp to super problem self.model.add_subsystem( 'composite_function', om.ExecComp('composite_objective = ' + final_expr, **kwargs), promotes_outputs=['composite_objective'], ) # connect from inside of the models to the composite objective for source, target in connection_names: self.model.connect(source, target) # finally add the objective self.model.add_objective('composite_objective', ref=ref)
[docs] def add_composite_objective_adv( self, missions: list[str], outputs: list[str], mission_weights: list[float] = None, output_weights: list[float] = None, ref: float = 1.0, ): """ Adds a composite objective function to the OpenMDAO problem by aggregating output values across multiple mission models, with independent weighting for both missions and outputs. This is most useful when you have historical information on how often a given mission was flown (mission_weights) and then you have a duel set of objectives you wish to include i.e. for each flight minimize both fuel_burned and gross_mass. How important fuel_burned is vs. gross_mass is determined via specifying output_weights. Parameters ---------- missions : list of str List of subsystem names (e.g., 'model1', 'model2') corresponding to different missions. outputs : list of str List of output variable names (e.g., Mission.Summary.FUEL_BURNED, Mission.Summary.GROSS_MASS) to be included in the objective from each mission. mission_weights : list of float, optional Weights assigned to each mission. If None, equal weighting is assumed. These weights will be normalized internally to sum to 1.0. output_weights : list of float, optional Weights assigned to each output variable. If None, equal weighting is assumed. These weights will also be normalized internally to sum to 1.0. ref : float, optional Reference value for the final objective. Passed to `add_objective()` for scaling. Behavior -------- - Connects each specified mission output into a newly created `ExecComp` block. - Computes a weighted sum: each output is weighted by both its output weight and the weight of the mission it came from. - Adds the result as the final objective named `'composite_objective'`, accessible at the top level model. """ # Setup mission and output lengths if they are not already given if mission_weights is None: mission_weights = np.ones(len(missions)) if output_weights is None: output_weights = np.ones(len(outputs)) # # Make an ExecComp # for mission in missions: # for output in outputs: # weights are normalized - e.g. for given weights 3:1, the normalized # weights are 0.75:0.25 # TODO: Remove before push # output_weights = [2,1] # mission_weights = [1,1] # missions = ['model1','model2'] # outputs = ['fuelburn','gross_mass'] weighted_exprs = [] connection_names = [] output_weights = [float(weight / sum(output_weights)) for weight in output_weights] mission_weights = [float(weight / sum(mission_weights)) for weight in mission_weights] for mission, mission_weight in zip(missions, mission_weights): for output, output_weight in zip(outputs, output_weights): connection_names.append( [f'composite_function.{mission}_{output}', f'{mission}.{output}'] ) weighted_exprs.append(f'{mission}_{output}*{output_weight}*{mission_weight}') final_expr = ' + '.join(weighted_exprs) # weighted_str looks like: 'model1.fuelburn*0.67*0.5 + model1.gross_mass*0.33*0.5 + model2.fuelburn*0.67*0.5 + model2.gross_mass*0.33*0.5' # adding composite execComp to super problem self.model.add_subsystem( 'composite_function', om.ExecComp('composite_objective = ' + final_expr, has_diag_partials=True), promotes_outputs=['composite_objective'], ) # connect from inside of the models to the composite objective for target, source in connection_names: self.model.connect(target, source) # finally add the objective self.model.add_objective('composite_objective', ref=ref)
[docs] def build_model(self, verbosity=None): """ A lightly wrapped add_pre_mission_systems(), add_phases(), add_post_mission_systems(), and link_phases() method to decrease code length for the avarage user. If the user needs finer control, they should not use build_model but instead call the four individual methods separately. Parameters ---------- verbosity : Verbosity or int, optional Controls the level of printouts for this method. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if self.problem_type == ProblemType.MULTI_MISSION: for name, group in self.aviary_groups_dict.items(): group.add_pre_mission_systems(verbosity=verbosity) group.add_phases(verbosity=verbosity, comm=self.comm) group.add_post_mission_systems(verbosity=verbosity) group.link_phases(verbosity=verbosity, comm=self.comm) else: self.model.add_pre_mission_systems(verbosity=verbosity) self.model.add_phases(verbosity=verbosity, comm=self.comm) self.model.add_post_mission_systems(verbosity=verbosity) self.model.link_phases(verbosity=verbosity, comm=self.comm)
[docs] def promote_inputs(self, mission_names: list[str], var_pairs: list[tuple[str, str]]): """ Link a promoted input to multiple groups' unpromoted inputs using an internal IVC. Parameters ---------- self : om.Problem The Problem instance this is being called from. missions : list of str The subsystem names receiving the connection. var_pairs : list of (str, str) Each pair is (input_name_in_group, top_level_name_to_use) """ # for name, group in self.aviary_groups_dict.items(): for mission_name in mission_names: if name == mission_name: # the group name matches the mission name, # group.promotes(var_pairs) # print("var_pairs",var_pairs) self.model.promotes(mission_name, inputs=var_pairs)
[docs] def setup(self, **kwargs): """ A lightly wrapped setup() and set_initial_defaults() method for the problem. Parameters ---------- verbosity : Verbosity or int, optional Controls the level of printouts for this method. **kwargs : optional All arguments to be passed to the OpenMDAO prob.setup() method. """ # verbosity is not used in this method, but it is understandable that a user # might try and include it (only method that doesn't accept it). Capture it if 'verbosity' in kwargs: kwargs.pop('verbosity') # Use OpenMDAO's model options to pass all options through the system hierarchy. if self.problem_type == ProblemType.MULTI_MISSION: for name, group in self.aviary_groups_dict.items(): setup_model_options( self, group.aviary_inputs, group.meta_data, prefix=name, group=group ) with warnings.catch_warnings(): # group.aviary_inputs is already set group.meta_data = self.meta_data # <- meta_data is the same for all groups # group.phase_info is already set else: setup_model_options(self, self.aviary_inputs, self.meta_data) # suppress warnings: # "input variable '...' promoted using '*' was already promoted using 'aircraft:*' with warnings.catch_warnings(): self.model.aviary_inputs = ( self.aviary_inputs ) # <- there is only one aviary_inputs in this case self.model.meta_data = self.meta_data # self.model.phase_info is already set with warnings.catch_warnings(): warnings.simplefilter('ignore', om.OpenMDAOWarning) warnings.simplefilter('ignore', om.PromotionWarning) super().setup(**kwargs) self.set_initial_guesses(verbosity=None)
[docs] def set_initial_guesses(self, parent_prob=None, parent_prefix='', verbosity=None): """ Call `set_val` on the trajectory for states and controls to seed the problem with reasonable initial guesses. This is especially important for collocation methods. This method first identifies all phases in the trajectory then loops over each phase. Specific initial guesses are added depending on the phase and mission method. Cruise is treated as a special phase for GASP-based missions because it is an AnalyticPhase in Dymos. For this phase, we handle the initial guesses first separately and continue to the next phase after that. For other phases, we set the initial guesses for states and controls according to the information available in the 'initial_guesses' attribute of the phase. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if self.problem_type == ProblemType.MULTI_MISSION: for name, group in self.aviary_groups_dict.items(): group.set_initial_guesses( parent_prob=parent_prob, parent_prefix=parent_prefix, verbosity=verbosity, ) else: self.model.set_initial_guesses( parent_prob=parent_prob, parent_prefix=parent_prefix, verbosity=verbosity, )
[docs] def run_aviary_problem( self, restart_filename=None, suppress_solver_print=True, run_driver=True, simulate=False, make_plots=True, verbosity=None, ): """ This function actually runs the Aviary problem, which could be a simulation, optimization, or a driver execution, depending on the arguments provided. Parameters ---------- restart_filename : str, optional The name of the file that contains previously computed solutions which are to be used as starting points for this run. If it is None (default), no restart file will be used. suppress_solver_print : bool, optional If True (default), all solvers' print statements will be suppressed. Useful for deeply nested models with multiple solvers so the print statements don't overwhelm the output. run_driver : bool, optional If True (default), the driver (aka optimizer) will be executed. If False, the problem will be run through one pass -- equivalent to OpenMDAO's `run_model` behavior. simulate : bool, optional If True, an explicit Dymos simulation will be performed. The default is False. make_plots : bool, optional If True (default), Dymos html plots will be generated as part of the output. verbosity : Verbosity or int, optional Controls the level of printouts for this method. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if verbosity >= Verbosity.VERBOSE: # VERBOSE, DEBUG self.final_setup() with open(self.get_reports_dir() / 'input_list.txt', 'w') as outfile: self.model.list_inputs(out_stream=outfile) recorder = om.SqliteRecorder('optimization_history.db') self.driver.add_recorder(recorder) if suppress_solver_print: self.set_solver_print(level=0) # and run mission, and dynamics if run_driver: self.result = dm.run_problem( self, run_driver=run_driver, simulate=simulate, make_plots=make_plots, solution_record_file='problem_history.db', restart=restart_filename, ) # Manually print out a failure message for low verbosity modes that suppress # optimizer printouts, which may include the results message. Assumes success, # alerts user on a failure if ( not self.result.success and verbosity <= Verbosity.BRIEF # QUIET, BRIEF ): warnings.warn('\nAviary run failed. See the dashboard for more details.\n') else: self.run_model() self.result = self.driver.result # update n2 diagram after run. outdir = Path(self.get_reports_dir(force=True)) outfile = os.path.join(outdir, 'n2.html') om.n2( self, outfile=outfile, show_browser=False, ) if verbosity >= Verbosity.VERBOSE: # VERBOSE, DEBUG with open(Path(self.get_reports_dir()) / 'output_list.txt', 'w') as outfile: self.model.list_outputs(out_stream=outfile) if self.generate_payload_range: self.run_payload_range()
[docs] def run_off_design_mission( self, problem_type: ProblemType, phase_info=None, equations_of_motion: EquationsOfMotion = None, problem_configurator=None, num_first_class=None, num_business=None, num_tourist=None, num_pax=None, wing_cargo=None, misc_cargo=None, cargo_mass=None, mission_gross_mass=None, mission_range=None, optimizer=None, name=None, fill_cargo=False, fill_fuel=False, verbosity=None, payload_range_controls=None, ): """ Runs the aircraft model in a off-design mission of the specified type. It is assumed that the AviaryProblem is loaded with an already sized aircraft. Parameters ---------- problem_type : str, ProblemType The type of off-design mission to be flown. SIZING missions are not allowed. phase_info : dict (optional) The phase_info to use for the off-design mission. If not provided, the phase info used for the previous Aviary run (typically the design mission) is used. equation_of_motion : str, EquationsOfMotion Which equations of motion to use for the off-design mission. If not provided, the equations of motion used for the previous Aviary run (typically the design mission) is used. problem_configurator : ProblemConfigurator Problem configurator to use for the off-design mission. If not provided, the problem configurator used for the previous Aviary run (typically the design mission) is used. num_first_class : int, optional [FLOPS mass only] Number of first-class passengers flying on the off-design mission. num_business : int, optional [FLOPS mass only] Number of business-class passengers flying on the off-design mission. num_tourist : int, optional [FLOPS mass only] Number of tourist-class passengers flying on the off-design mission. num_pax : int, optional Total number of passengers flying on the off-design mission. Optional if using FLOPS-based mass and passengers per class are defined instead. wing_cargo : float, optional [FLOPS mass only] Mass of wing cargo flying on off-design mission, in pounds-mass. misc_cargo : float, optional [FLOPS mass only] Mass of miscellaneous cargo flying on off-design mission, in pounds-mass. cargo_mass : float, optional Total cargo mass flying on off-design mission, in pounds-mass. Optional if using FLOPS- based mass, individual wing and/or misc cargo is defined, and no additional cargo is being carried elsewhere. mission_gross_mass : float, optional Gross mass of aircraft flying off-design mission, in pounds-mass. Defaults to design gross mass. For missions where mass is solved for (such as ALTERNATE missions), this is the initial guess. mission_range : float, optional [ALTERNATE missions only] Sets fixed range of flown off-design mission, in nautical miles. Unused for other mission types. optimizer : string, optional Set which optimizer to use for the off-design mission. If not provided, the optimizer used for the previously ran sizing mission is used. If that cannot be found, such as when a problem is loaded from a json output file, then the default optimizer (SLSQP) is chosen. name : str, optional Name of the off-design problem. Defaults to "{original problem name}_off_design". fill_cargo : bool, optional Adds a design variable to vary cargo mass to exactly fill the aircraft to design takeoff gross weight. Useful for cases where precise cargo mass required is not known, or when operating mass can change between missions. Defaults to False. Cannot be used at the same time as fill_fuel. fill_fuel : bool, optional Adds takeoff gross mass as a design variable. Useful for cases when operating mass can change between missions. Defaults to False. Cannot be used at the same time as fill_cargo. verbosity : int, Verbosity Sets the printout level for the entire off-design problem that is ran. payload_range_controls : bool Flag used by run_payload_range method call. Adds a cargo variable as a design variable (chosen based on the specific problem), which is allowed to float a small amount to account for issues when hardcoding payload & fuel mass for certain points on the payload-range diagram. This argument is generally not needed for users manually running off-design missions. """ # For off-design missions, provided verbosity will be used for all L2 method calls if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF # accept str for problem type problem_type = ProblemType(problem_type) if problem_type is ProblemType.SIZING: raise UserWarning('Off-design missions cannot be SIZING missions.') if fill_cargo and fill_fuel: raise UserWarning( 'Cannot run an off-design mission with both "fill_cargo" and "fill_fuel" flags ' 'active.' ) if name is None: name = name = self._name + '_off_design' off_design_prob = AviaryProblem(name=name) # Set up problem for mission, such as equations of motion, configurators, etc. inputs = deepcopy(self.aviary_inputs) design_gross_mass = self.get_val(Mission.Design.GROSS_MASS, units='lbm')[0] inputs.set_val(Mission.Design.GROSS_MASS, design_gross_mass, units='lbm') if problem_type is not None: inputs.set_val(Settings.PROBLEM_TYPE, problem_type) if equations_of_motion is not None: inputs.set_val(Settings.EQUATIONS_OF_MOTION, equations_of_motion) if problem_configurator is not None: off_design_prob.model.configurator = problem_configurator if phase_info is None: # model phase_info only contains mission information, recreate the whole thing here phase_info = self.model.mission_info.copy() phase_info['pre_mission'] = self.model.pre_mission_info.copy() phase_info['post_mission'] = self.model.post_mission_info.copy() # update passenger count and cargo masses mass_method = inputs.get_val(Settings.MASS_METHOD) # only FLOPS cares about seat class or specific cargo categories if mass_method == LegacyCode.FLOPS: if num_first_class is not None: inputs.set_val(Aircraft.CrewPayload.NUM_FIRST_CLASS, num_first_class) if num_business is not None: inputs.set_val(Aircraft.CrewPayload.NUM_BUSINESS_CLASS, num_business) if num_tourist is not None: inputs.set_val(Aircraft.CrewPayload.NUM_TOURIST_CLASS, num_tourist) if wing_cargo is not None: inputs.set_val(Aircraft.CrewPayload.WING_CARGO, wing_cargo, 'lbm') if misc_cargo is not None: inputs.set_val(Aircraft.CrewPayload.MISC_CARGO, misc_cargo, 'lbm') else: warnings.warn( 'Off-design functionality is in beta for GASP-mass based aircraft. Please manually ' 'verify your results.' ) if num_pax is not None: inputs.set_val(Aircraft.CrewPayload.NUM_PASSENGERS, num_pax) if cargo_mass is not None: inputs.set_val(Aircraft.CrewPayload.CARGO_MASS, cargo_mass, 'lbm') # NOTE once load_inputs is run, phase info details are stored in prob.model.configurator, # meaning any phase_info changes that happen after load inputs is ignored if problem_type is ProblemType.ALTERNATE: # Set mission range, aviary will calculate required fuel if mission_range is None: if verbosity >= Verbosity.VERBOSE: warnings.warn( 'Alternate problem type requested with no specified range. Using design ' 'mission range for the off-design mission.' ) mission_range = self.get_val(Mission.Summary.RANGE, units='NM')[0] phase_info['post_mission']['target_range'] = ( mission_range, 'nmi', ) # reset the AviaryProblem to run the new mission off_design_prob.load_inputs(inputs, phase_info, verbosity=verbosity) # Update inputs that are specific to problem type # Some Alternate problem changes had to happen before load_inputs, all fallout problem # changes must come after load_inputs if problem_type is ProblemType.ALTERNATE: off_design_prob.aviary_inputs.set_val(Mission.Summary.RANGE, mission_range, units='NM') # set initial guess for Mission.Summary.GROSS_MASS to help optimizer with new design # variable bounds. if mission_gross_mass is None: mission_gross_mass = off_design_prob.aviary_inputs.get_val( Mission.Design.GROSS_MASS, 'lbm' ) off_design_prob.aviary_inputs.set_val( Mission.Summary.GROSS_MASS, mission_gross_mass * 0.9, units='lbm' ) elif problem_type is ProblemType.FALLOUT: # Set mission fuel and calculate gross weight, aviary will calculate range if mission_gross_mass is None: if verbosity >= Verbosity.VERBOSE: warnings.warn( 'Fallout problem type requested with no specified gross mass. Using design ' 'takeoff gross mass for the off-design mission.' ) mission_gross_mass = self.get_val(Mission.Design.GROSS_MASS, units='lbm')[0] off_design_prob.aviary_inputs.set_val( Mission.Summary.GROSS_MASS, mission_gross_mass, units='lbm' ) off_design_prob.check_and_preprocess_inputs(verbosity=verbosity) off_design_prob.add_pre_mission_systems(verbosity=verbosity) off_design_prob.add_phases(verbosity=verbosity) off_design_prob.add_post_mission_systems(verbosity=verbosity) off_design_prob.link_phases(verbosity=verbosity) if optimizer is None: try: optimizer = self.driver.options['optimizer'] except KeyError: optimizer = None off_design_prob.add_driver(optimizer, verbosity=verbosity) off_design_prob.add_design_variables(verbosity=verbosity) # Handle edge case for payload-range diagrams # Select which cargo variable makes the most sense to float, and then set a tolerance # based on rough guesses on what is sufficient to get the problem to converge without # setting design variable bounds too large if fill_cargo: # GASP cargo mass is an input, can directly use as control variable if mass_method is GASP: control_var = Aircraft.CrewPayload.CARGO_MASS val = cargo_mass tol = 1.05 # FLOPS cargo mass is an output, not valid for control variable. Pick control var. else: # See if misc_cargo is being used, float that as a backup if misc_cargo is None or misc_cargo == 0: # We aren't using cargo_mass OR misc_mass - try wing cargo as last resort if wing_cargo is None or wing_cargo == 0: # We don't know enough about the aircraft to make any informed guesses. Use # arbitrary values control_var = Aircraft.CrewPayload.MISC_CARGO val = self.get_val(Mission.Design.GROSS_MASS) tol = 0.05 inputs.set_val(Aircraft.CrewPayload.CARGO_MASS, 0, 'lbm') else: control_var = Aircraft.CrewPayload.WING_CARGO val = wing_cargo tol = 1.1 else: control_var = Aircraft.CrewPayload.MISC_CARGO val = misc_cargo tol = 1.1 off_design_prob.model.add_design_var( control_var, lower=0, upper=val * tol, ref=val, ) if fill_fuel: off_design_prob.model.add_design_var( Mission.Summary.GROSS_MASS, lower=0, upper=off_design_prob.aviary_inputs.get_val(Mission.Design.GROSS_MASS, units='lbm'), ref=off_design_prob.aviary_inputs.get_val(Mission.Design.GROSS_MASS, units='lbm'), ) off_design_prob.add_objective(verbosity=verbosity) off_design_prob.setup(verbosity=verbosity) off_design_prob.set_initial_guesses(verbosity=verbosity) off_design_prob.run_aviary_problem(verbosity=verbosity) return off_design_prob
[docs] def run_payload_range(self, verbosity=None): """ This function runs Payload/Range analysis for the aircraft model. For an aircraft model that has been sized with a mission has has successfully converged, this function will adjust the given phase information, assuming that there is a phase named 'cruise' and elongates the duration bounds to allow the optimizer to converge for the max economic and ferry missions. Parameters ---------- verbosity : Verbosity or int (optional) Sets overriding verbosity to be used while running all payload-range points Returns ------- payload_range_problems : tuple Tuple containing the off-design AviaryProblems for the max economic and ferry ranges TODO currently does not account for reserve fuel """ # For off-design missions, provided verbosity will be used for all L2 method calls if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if not self.result.success and verbosity > Verbosity.QUIET: warnings.warn( 'Payload Range Diagrams cannot be generated for unconverged Aviary problems.' ) return () elif self.problem_type is ProblemType.MULTI_MISSION and verbosity > Verbosity.QUIET: warnings.warn( 'Payload Range Diagrams currently cannot be generated for aircraft designed ' 'using multimission capability.' ) return () # Off-design missions do not currently work for GASP masses or missions. mass_method = self.model.aviary_inputs.get_val(Settings.MASS_METHOD) equations_of_motion = self.model.aviary_inputs.get_val(Settings.EQUATIONS_OF_MOTION) if ( mass_method == LegacyCode.FLOPS and equations_of_motion is EquationsOfMotion.HEIGHT_ENERGY ): # make a copy of the phase_info to avoid modifying the original. phase_info = self.model.mission_info.copy() phase_info['pre_mission'] = self.model.pre_mission_info.copy() phase_info['post_mission'] = self.model.post_mission_info.copy() # This checks if the 'cruise' phase exists, then automatically extends duration bounds # of the cruise stage to allow for the longer economic and ferry missions. if phase_info['cruise']: min_duration = phase_info['cruise']['user_options']['time_duration_bounds'][0][0] max_duration = phase_info['cruise']['user_options']['time_duration_bounds'][0][1] cruise_units = phase_info['cruise']['user_options']['time_duration_bounds'][1] phase_info['cruise']['user_options'].update( {'time_duration_bounds': ((min_duration, 2 * max_duration), cruise_units)} ) # TODO Verify that previously run point is actually max payload/fuel point, and if not # run off-design mission for that point # Point 1 is along the y axis (range=0) payload_1 = float(self.get_val(Aircraft.CrewPayload.TOTAL_PAYLOAD_MASS)[0]) range_1 = 0 fuel_1 = 0 # Point 2 (Design Range): sizing mission which is assumed to be the point of max # payload + fuel on the payload and range diagram payload_2 = payload_1 range_2 = float(self.get_val(Mission.Summary.RANGE)[0]) gross_mass = float(self.get_val(Mission.Summary.GROSS_MASS)[0]) # NOTE this operating mass is based on the previously run mission - assumed this is the # design mission!! Includes cargo containers needed for design (max payload) operating_mass = float(self.get_val(Mission.Summary.OPERATING_MASS)[0]) fuel_capacity = float(self.get_val(Aircraft.Fuel.TOTAL_CAPACITY)[0]) unusable_fuel = float(self.get_val(Aircraft.Fuel.UNUSABLE_FUEL_MASS)[0]) max_payload = float(self.get_val(Aircraft.CrewPayload.TOTAL_PAYLOAD_MASS)[0]) fuel_2 = self.get_val(Mission.Summary.FUEL_BURNED)[0] max_usable_fuel = fuel_capacity - unusable_fuel # An aircraft may be designed with fuel tank capacity that, if fully filled, would # exceed MTOW. In that scenario, Max Economic Range and Ferry Range are the same, and # the point only needs to be run once. if operating_mass + max_usable_fuel < gross_mass: # Point 3 (Max Economic Range): max fuel and remaining payload capacity economic_mission_total_payload = gross_mass - operating_mass - max_usable_fuel payload_frac = economic_mission_total_payload / max_payload # Calculates Different payload quantities economic_mission_wing_cargo = ( self.model.aviary_inputs.get_val(Aircraft.CrewPayload.WING_CARGO, 'lbm') * payload_frac ) economic_mission_misc_cargo = ( self.model.aviary_inputs.get_val(Aircraft.CrewPayload.MISC_CARGO, 'lbm') * payload_frac ) economic_mission_num_first = int( (self.model.aviary_inputs.get_val(Aircraft.CrewPayload.Design.NUM_FIRST_CLASS)) * payload_frac ) economic_mission_num_bus = int( ( self.model.aviary_inputs.get_val( Aircraft.CrewPayload.Design.NUM_BUSINESS_CLASS ) ) * payload_frac ) economic_mission_num_tourist = int( ( self.model.aviary_inputs.get_val( Aircraft.CrewPayload.Design.NUM_TOURIST_CLASS ) ) * payload_frac ) # Passenger number rounding and potentially cargo container mass changing means # we don't know if we actually filled the aircraft to exactly TOGW yet. Need to use # "fill_cargo" flag in off-design call economic_range_prob = self.run_off_design_mission( problem_type=ProblemType.FALLOUT, phase_info=phase_info, num_first_class=economic_mission_num_first, num_business=economic_mission_num_bus, num_tourist=economic_mission_num_tourist, wing_cargo=economic_mission_wing_cargo, misc_cargo=economic_mission_misc_cargo, name=self._name + '_max_economic_range', fill_cargo=True, verbosity=verbosity, ) # Pull the payload and range values from the fallout mission payload_3 = float( economic_range_prob.get_val(Aircraft.CrewPayload.TOTAL_PAYLOAD_MASS) ) range_3 = float(economic_range_prob.get_val(Mission.Summary.RANGE)) fuel_3 = economic_range_prob.get_val(Mission.Summary.FUEL_BURNED)[0] prob_3_skip = False else: prob_3_skip = True # only fill fuel until hit TOGW max_usable_fuel = gross_mass - operating_mass # Point 4 (Ferry Range): maximum fuel and 0 payload ferry_range_gross_mass = operating_mass + max_usable_fuel # BUG 0 passengers breaks the problem, so 1 must be used ferry_range_prob = self.run_off_design_mission( problem_type=ProblemType.FALLOUT, phase_info=phase_info, num_first_class=0, num_business=0, num_tourist=1, wing_cargo=0, misc_cargo=0, cargo_mass=0, mission_gross_mass=ferry_range_gross_mass, name=self._name + '_ferry_range', fill_fuel=True, verbosity=verbosity, ) payload_4 = float(ferry_range_prob.get_val(Aircraft.CrewPayload.TOTAL_PAYLOAD_MASS)) range_4 = float(ferry_range_prob.get_val(Mission.Summary.RANGE)) fuel_4 = ferry_range_prob.get_val(Mission.Summary.FUEL_BURNED)[0] # if economic mission was skipped, economic_range_prob is the same as ferry_range_prob if prob_3_skip: economic_range_prob = ferry_range_prob payload_3 = payload_4 range_3 = range_4 # Check if fallout missions ran successfully before writing to csv file # If both missions ran successfully, writes the payload/range data to a csv file self.payload_range_data = payload_range_data = NamedValues() if ferry_range_prob.result.success and economic_range_prob.result.success: payload_range_data.set_val( 'Mission Name', ['Zero Fuel', 'Design Mission', 'Max Economic Mission', 'Ferry Mission'], ) payload_range_data.set_val( 'Payload', [payload_1, payload_2, payload_3, payload_4], 'lbm' ) payload_range_data.set_val('Fuel', [fuel_1, fuel_2, fuel_3, fuel_4], 'lbm') payload_range_data.set_val('Range', [range_1, range_2, range_3, range_4], 'NM') write_data_file( Path(self.get_reports_dir(force=True)) / 'payload_range_data.csv', payload_range_data, ) # Prints the payload/range data to the console if verbosity is set to VERBOSE or DEBUG if verbosity >= Verbosity.VERBOSE: for item in payload_range_data: print(f'{item[0]} ({item[1][1]}): {item[1][0]}') return (economic_range_prob, ferry_range_prob) else: warnings.warn( 'One or both of the fallout missions did not run successfully; payload/range ' 'diagram was not generated.' ) else: warnings.warn( 'Payload/range analysis is currently only supported for the energy equations of ' 'motion.' )
[docs] def save_results(self, json_filename='sizing_results.json'): """ This function saves an aviary problem object into a json file. Parameters ---------- aviary_problem : AviaryProblem Aviary problem object optimized for the aircraft design/sizing mission. Assumed to contain aviary_inputs and Mission.Summary.GROSS_MASS json_filename : string User specified name and relative path of json file to save the data into. save_to_reports : bool Flag that sets where the results are saved - if True, the file is saved in the OpenMDAO reports directory. If False, the file is saved to the current working directory. """ aviary_input_list = [] with open(json_filename, 'w') as jsonfile: # Loop through aviary input datastructure and create a list for data in self.model.aviary_inputs: (name, (value, units)) = data type_value = type(value) # Get the gross mass value from the sizing problem and add it to input list if name == Mission.Summary.GROSS_MASS or name == Mission.Design.GROSS_MASS: Mission_Summary_GROSS_MASS_val = self.get_val( Mission.Summary.GROSS_MASS, units=units ) Mission_Summary_GROSS_MASS_val_list = Mission_Summary_GROSS_MASS_val.tolist() value = Mission_Summary_GROSS_MASS_val_list[0] else: # there are different data types we need to handle for conversion to json format # int, bool, float doesn't need anything special # Convert numpy arrays to lists if type_value is np.ndarray: value = value.tolist() # Lists are fine except if they contain enums or Paths if type_value is list: if isinstance(value[0], Enum): for i in range(len(value)): value[i] = value[i].name elif isinstance(value[0], Path): for i in range(len(value)): value[i] = str(value[i]) # Enums and Paths need converting to a string if isinstance(value, Enum): value = value.name elif isinstance(value, Path): value = str(value) # Append the data to the list aviary_input_list.append([name, value, units, str(type_value)]) if Mission.Design.GROSS_MASS not in self.model.aviary_inputs: aviary_input_list.append( [ Mission.Design.GROSS_MASS, self.get_val(Mission.Design.GROSS_MASS, 'lbm')[0], 'lbm', str(float), ] ) # Write the list to a json file json.dump( aviary_input_list, jsonfile, sort_keys=True, indent=4, ensure_ascii=False, ) jsonfile.close()
def _add_hybrid_objective(self, phase_info): phases = list(phase_info.keys()) takeoff_mass = self.model.aviary_inputs.get_val(Mission.Design.GROSS_MASS, units='lbm') obj_comp = om.ExecComp( f'obj = -final_mass / {takeoff_mass} + final_time / 5.', final_mass={'units': 'lbm'}, final_time={'units': 'h'}, ) self.model.add_subsystem('obj_comp', obj_comp) final_phase_name = phases[-1] self.model.connect( f'traj.{final_phase_name}.timeseries.mass', 'obj_comp.final_mass', src_indices=[-1], ) self.model.connect( f'traj.{final_phase_name}.timeseries.time', 'obj_comp.final_time', src_indices=[-1], ) def _save_to_csv_file(self, filename): with open(filename, 'w', newline='') as csvfile: fieldnames = ['name', 'value', 'units'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) for name, value_units in sorted(self.model.aviary_inputs): value, units = value_units writer.writerow({'name': name, 'value': value, 'units': units})
def _read_sizing_json(json_filename, meta_data, verbosity=Verbosity.BRIEF): """ This function reads in saved results from a json file. Parameters ---------- json_filename: str, Path json file to load the data from meta_data: dict Variable metadata that will be used to load file data Returns ------- AviaryValues object with updated input values from json file """ aviary_inputs = AviaryValues() # load saved input list from json file with open(json_filename) as json_data_file: loaded_aviary_input_list = json.load(json_data_file) json_data_file.close() # Loop over input list and assign aviary problem input values for inputs in loaded_aviary_input_list: [var_name, var_values, var_units, var_type] = inputs # Initialize some flags to identify enums is_enum = False if var_type == "<class 'list'>": # check if the list contains enums for i in range(len(var_values)): if isinstance(var_values[i], str): if var_values[i].find('<') != -1: # Found a list of enums: set the flag is_enum = True # Manipulate the string to find the value tmp_var_values = var_values[i].split(':')[-1] var_values[i] = ( tmp_var_values.replace('>', '') .replace('<', '') .replace(']', '') .replace("'", '') .replace(' ', '') ) if is_enum: var_values = convert_strings_to_data(var_values) elif var_type.find('<enum') != -1: # Identify enums and manipulate the string to find the value tmp_var_values = var_values.split(':')[-1] var_values = ( tmp_var_values.replace('>', '') .replace('<', '') .replace(']', '') .replace("'", '') .replace(' ', '') ) var_values = convert_strings_to_data([var_values]) # Check if the variable is in meta data if var_name in meta_data.keys(): try: aviary_inputs.set_val(var_name, var_values, units=var_units, meta_data=meta_data) except BaseException: if verbosity >= Verbosity.VERBOSE: warnings.warn( f'Could not add item in json output to AviaryValues: input string = ' f'{inputs}, attempted to set_value({var_name}, {var_values}, {var_units}). ' 'This variable was skipped.' ) else: # Not in the MetaData if verbosity >= Verbosity.VERBOSE: warnings.warn( f'While reading json output, item was not found in MetaData: {inputs}. This ' 'variable was skipped.' ) return aviary_inputs
[docs] def reload_aviary_problem( filename, phase_info=None, metadata=BaseMetaData.copy(), verbosity=Verbosity.QUIET ): """ Loads a previously sized Aviary model and returns an AviaryProblem for that model. Parameters ---------- filename : str, Path User specified name and relative path of json file containing the sized aircraft data metadata : dict (optional) Custom metadata if needed to read all variables present in the json output file verbosity : Verbosity, int (optional) Controls level of terminal output for function call Returns ------- Aviary Problem object with filled aviary_inputs. To use this problem for anything other than running off-design missions, then the full level 2 interface should be used. "load_inputs()" can be skipped as the "aviary_inputs" attribute is prefilled here. """ # warning if default is used # Initialize a new aviary problem and aviary_input data structure prob = AviaryProblem() filename = get_path(filename) aviary_inputs = _read_sizing_json(filename, metadata, verbosity) prob.load_inputs(aviary_inputs, phase_info, verbosity=verbosity) prob.check_and_preprocess_inputs(verbosity=verbosity) # Add Systems prob.add_pre_mission_systems(verbosity=verbosity) prob.add_phases(verbosity=verbosity) prob.add_post_mission_systems(verbosity=verbosity) # Link phases and variables prob.link_phases(verbosity=verbosity) prob.add_driver(verbosity=verbosity) prob.add_design_variables(verbosity=verbosity) # Load optimization problem formulation # Detail which variables the optimizer can control prob.add_objective(verbosity=verbosity) prob.setup(verbosity=verbosity) prob.final_setup() # some variables are normally in the problem instead, so add them there too prob.set_val( Mission.Summary.GROSS_MASS, aviary_inputs.get_val(Mission.Summary.GROSS_MASS, 'lbm'), 'lbm' ) return prob