Source code for aviary.interface.methods_for_level2

import csv
import inspect
import json
import os
import warnings
from datetime import datetime
from enum import Enum
from pathlib import Path

import dymos as dm
import numpy as np
import openmdao.api as om
from openmdao.utils.reports_system import _default_reports

from aviary.core.aviary_group import AviaryGroup

from aviary.utils.aviary_values import AviaryValues
from aviary.utils.functions import convert_strings_to_data
from aviary.interface.utils import set_warning_format
from aviary.utils.merge_variable_metadata import merge_meta_data

from aviary.variable_info.enums import (
    AnalysisScheme,
    EquationsOfMotion,
    LegacyCode,
    ProblemType,
    Verbosity,
)
from aviary.variable_info.functions import setup_model_options
from aviary.variable_info.variable_meta_data import _MetaData as BaseMetaData
from aviary.variable_info.variables import Aircraft, Dynamic, Mission, Settings

FLOPS = LegacyCode.FLOPS
GASP = LegacyCode.GASP


[docs] class AviaryProblem(om.Problem): """ Main class for instantiating, formulating, and solving Aviary problems. On a basic level, this problem object is all the conventional user needs to interact with. Looking at the three "levels" of use cases, from simplest to most complicated, we have: Level 1: users interact with Aviary through input files (.csv or .yaml, TBD) Level 2: users interact with Aviary through a Python interface Level 3: users can modify Aviary's workings through Python and OpenMDAO This Problem object is simply a specialized OpenMDAO Problem that has additional methods to help users create and solve Aviary problems. """
[docs] def __init__(self, analysis_scheme=AnalysisScheme.COLLOCATION, verbosity=None, **kwargs): # Modify OpenMDAO's default_reports for this session. new_reports = [ 'subsystems', 'mission', 'timeseries_csv', 'run_status', 'input_checks', ] for report in new_reports: if report not in _default_reports: _default_reports.append(report) super().__init__(**kwargs) self.timestamp = datetime.now() # If verbosity is set to anything but None, this defines how warnings are formatted for the # whole problem - warning format won't be updated if user requests a different verbosity # level for a specific method self.verbosity = verbosity set_warning_format(verbosity) self.model = AviaryGroup() self.aviary_inputs = None self.analysis_scheme = analysis_scheme
[docs] def load_inputs( self, aircraft_data, phase_info=None, engine_builders=None, problem_configurator=None, meta_data=BaseMetaData, verbosity=None, ): """ This method loads the aviary_values inputs and options that the user specifies. They could specify files to load and values to replace here as well. Phase info is also loaded if provided by the user. If phase_info is None, the appropriate default phase_info based on mission analysis method is used. This method is not strictly necessary; a user could also supply an AviaryValues object and/or phase_info dict of their own. """ # We haven't read the input data yet, we don't know what desired run verbosity is # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # usually None # TODO: We cannot pass self.verbosity back up from load inputs for multi-mission because there could be multiple .csv files aviary_inputs, verbosity = self.model.load_inputs( aircraft_data=aircraft_data, phase_info=phase_info, engine_builders=engine_builders, problem_configurator=problem_configurator, meta_data=meta_data, verbosity=verbosity, ) # When there is only 1 aircraft model/mission, preserve old behavior. self.phase_info = self.model.phase_info self.aviary_inputs = aviary_inputs self.verbosity = verbosity return self.aviary_inputs
[docs] def check_and_preprocess_inputs(self, verbosity=None): """ This method checks the user-supplied input values for any potential problems and preprocesses the inputs to prepare them for use in the Aviary problem. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.check_and_preprocess_inputs(verbosity=verbosity) self._update_metadata_from_subsystems()
def _update_metadata_from_subsystems(self): """Merge metadata from user-defined subsystems into problem metadata.""" self.meta_data = BaseMetaData.copy() # loop through phase_info and external subsystems for phase_name in self.model.phase_info: # TODO: phase_info now resides in AviaryGroup. Accessing it as self.model.phase_info is just a temporary stop-gap # it will be necessary to combine multiple self.models external_subsystems = self.model.get_all_subsystems( self.model.phase_info[phase_name]['external_subsystems'] ) for subsystem in external_subsystems: meta_data = subsystem.meta_data.copy() self.meta_data = merge_meta_data([self.meta_data, meta_data]) self.model.meta_data = self.meta_data # TODO: temporary fix
[docs] def add_pre_mission_systems(self, verbosity=None): """ Add pre-mission systems to the Aviary problem. These systems are executed before the mission. Depending on the mission model specified (`FLOPS` or `GASP`), this method adds various subsystems to the aircraft model. For the `FLOPS` mission model, a takeoff phase is added using the Takeoff class with the number of engines and airport altitude specified. For the `GASP` mission model, three subsystems are added: a TaxiSegment subsystem, an ExecComp to calculate the time to initiate gear and flaps, and an ExecComp to calculate the speed at which to initiate rotation. All subsystems are promoted with aircraft and mission inputs and outputs as appropriate. A user can override this method with their own pre-mission systems as desired. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.add_pre_mission_systems(verbosity=verbosity)
[docs] def add_phases( self, phase_info_parameterization=None, parallel_phases=True, verbosity=None, ): """ Add the mission phases to the problem trajectory based on the user-specified phase_info dictionary. Parameters ---------- phase_info_parameterization (function, optional): A function that takes in the phase_info dictionary and aviary_inputs and returns modified phase_info. Defaults to None. parallel_phases (bool, optional): If True, the top-level container of all phases will be a ParallelGroup, otherwise it will be a standard OpenMDAO Group. Defaults to True. Returns ------- <Trajectory> The Dymos Trajectory object containing the added mission phases. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF return self.model.add_phases( phase_info_parameterization=phase_info_parameterization, parallel_phases=parallel_phases, verbosity=verbosity, comm=self.comm, )
[docs] def add_post_mission_systems(self, verbosity=None): """ Add post-mission systems to the aircraft model. This is akin to the pre-mission group or the "premission_systems", but occurs after the mission in the execution order. Depending on the mission model specified (`FLOPS` or `GASP`), this method adds various subsystems to the aircraft model. For the `FLOPS` mission model, a landing phase is added using the Landing class with the wing area and lift coefficient specified, and a takeoff constraints ExecComp is added to enforce mass, range, velocity, and altitude continuity between the takeoff and climb phases. The landing subsystem is promoted with aircraft and mission inputs and outputs as appropriate, while the takeoff constraints ExecComp is only promoted with mission inputs and outputs. For the `GASP` mission model, four subsystems are added: a LandingSegment subsystem, an ExecComp to calculate the reserve fuel required, an ExecComp to calculate the overall fuel burn, and three ExecComps to calculate various mission objectives and constraints. All subsystems are promoted with aircraft and mission inputs and outputs as appropriate. A user can override this with their own postmission systems. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.add_post_mission_systems(verbosity=verbosity)
[docs] def add_driver(self, optimizer=None, use_coloring=None, max_iter=50, verbosity=None): """ Add an optimization driver to the Aviary problem. Depending on the provided optimizer, the method instantiates the relevant driver (ScipyOptimizeDriver or pyOptSparseDriver) and sets the optimizer options. Options for 'SNOPT', 'IPOPT', and 'SLSQP' are specified. The method also allows for the declaration of coloring and setting debug print options. Parameters ---------- optimizer : str The name of the optimizer to use. It can be "SLSQP", "SNOPT", "IPOPT" or others supported by OpenMDAO. If "SLSQP", it will instantiate a ScipyOptimizeDriver, else it will instantiate a pyOptSparseDriver. use_coloring : bool, optional If True (default), the driver will declare coloring, which can speed up derivative computations. max_iter : int, optional The maximum number of iterations allowed for the optimization process. Default is 50. This option is applicable to "SNOPT", "IPOPT", and "SLSQP" optimizers. verbosity : Verbosity or int, optional Controls the level of printouts for this method. If None, uses the value of Settings.VERBOSITY in provided aircraft data. Returns ------- None """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF # Set defaults for optimizer and use_coloring based on analysis scheme if optimizer is None: optimizer = 'IPOPT' if use_coloring is None: use_coloring = False if self.analysis_scheme is AnalysisScheme.SHOOTING else True # check if optimizer is SLSQP if optimizer == 'SLSQP': driver = self.driver = om.ScipyOptimizeDriver() else: driver = self.driver = om.pyOptSparseDriver() driver.options['optimizer'] = optimizer if use_coloring: # define coloring options by verbosity if verbosity < Verbosity.VERBOSE: # QUIET, BRIEF driver.declare_coloring(show_summary=False) elif verbosity == Verbosity.VERBOSE: driver.declare_coloring(show_summary=True) else: # DEBUG driver.declare_coloring(show_summary=True, show_sparsity=True) if driver.options['optimizer'] == 'SNOPT': # Print Options # if verbosity == Verbosity.QUIET: isumm, iprint = 0, 0 elif verbosity == Verbosity.BRIEF: isumm, iprint = 6, 0 elif verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG isumm, iprint = 6, 9 driver.opt_settings['iSumm'] = isumm driver.opt_settings['iPrint'] = iprint # Optimizer Settings # driver.opt_settings['Major iterations limit'] = max_iter driver.opt_settings['Major optimality tolerance'] = 1e-4 driver.opt_settings['Major feasibility tolerance'] = 1e-7 elif driver.options['optimizer'] == 'IPOPT': # Print Options # if verbosity == Verbosity.QUIET: print_level = 0 driver.opt_settings['print_user_options'] = 'no' elif verbosity == Verbosity.BRIEF: print_level = 3 # minimum to get exit status driver.opt_settings['print_user_options'] = 'no' driver.opt_settings['print_frequency_iter'] = 10 elif verbosity == Verbosity.VERBOSE: print_level = 5 else: # DEBUG print_level = 7 driver.opt_settings['print_level'] = print_level # Optimizer Settings # driver.opt_settings['tol'] = 1.0e-6 driver.opt_settings['mu_init'] = 1e-5 driver.opt_settings['max_iter'] = max_iter # for faster convergence driver.opt_settings['nlp_scaling_method'] = 'gradient-based' driver.opt_settings['alpha_for_y'] = 'safer-min-dual-infeas' driver.opt_settings['mu_strategy'] = 'monotone' elif driver.options['optimizer'] == 'SLSQP': # Print Options # if verbosity == Verbosity.QUIET: disp = False else: disp = True driver.options['disp'] = disp # Optimizer Settings # driver.options['tol'] = 1e-9 driver.options['maxiter'] = max_iter # pyoptsparse print settings for both SNOPT, IPOPT if optimizer in ('SNOPT', 'IPOPT'): if verbosity == Verbosity.QUIET: driver.options['print_results'] = False elif verbosity < Verbosity.DEBUG: # QUIET, BRIEF, VERBOSE driver.options['print_results'] = 'minimal' elif verbosity >= Verbosity.DEBUG: driver.options['print_opt_prob'] = True # optimizer agnostic settings if verbosity >= Verbosity.VERBOSE: # VERBOSE, DEBUG driver.options['debug_print'] = ['desvars'] if verbosity == Verbosity.DEBUG: driver.options['debug_print'] = [ 'desvars', 'ln_cons', 'nl_cons', 'objs', ]
[docs] def add_design_variables(self, verbosity=None): """ Adds design variables to the Aviary problem. Depending on the mission model and problem type, different design variables and constraints are added. If using the FLOPS model, a design variable is added for the gross mass of the aircraft, with a lower bound of 10 lbm and an upper bound of 900,000 lbm. If using the GASP model, the following design variables are added depending on the mission type: - the initial thrust-to-weight ratio of the aircraft during ascent - the duration of the ascent phase - the time constant for the landing gear actuation - the time constant for the flaps actuation In addition, two constraints are added for the GASP model: - the initial altitude of the aircraft with gear extended is constrained to be 50 ft - the initial altitude of the aircraft with flaps extended is constrained to be 400 ft If solving a sizing problem, a design variable is added for the gross mass of the aircraft, and another for the gross mass of the aircraft computed during the mission. A constraint is also added to ensure that the residual range is zero. If solving an alternate problem, only a design variable for the gross mass of the aircraft computed during the mission is added. A constraint is also added to ensure that the residual range is zero. In all cases, a design variable is added for the final cruise mass of the aircraft, with no upper bound, and a residual mass constraint is added to ensure that the mass balances. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.add_design_variables(verbosity=verbosity)
[docs] def add_objective(self, objective_type=None, ref=None, verbosity=None): """ Add the objective function based on the given objective_type and ref. NOTE: the ref value should be positive for values you're trying to minimize and negative for values you're trying to maximize. Please check and double-check that your ref value makes sense for the objective you're using. Parameters ---------- objective_type : str The type of objective to add. Options are 'mass', 'hybrid_objective', 'fuel_burned', and 'fuel'. ref : float The reference value for the objective. If None, a default value will be used based on the objective type. Please see the `default_ref_values` dict for these default values. verbosity : Verbosity or int, optional Controls the level of printouts for this method. If None, uses the value of Settings.VERBOSITY in provided aircraft data. Raises ------ ValueError: If an invalid problem type is provided. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.add_subsystem( 'fuel_obj', om.ExecComp( 'reg_objective = overall_fuel/10000 + ascent_duration/30.', reg_objective={'val': 0.0, 'units': 'unitless'}, ascent_duration={'units': 's', 'shape': 1}, overall_fuel={'units': 'lbm'}, ), promotes_inputs=[ ('ascent_duration', Mission.Takeoff.ASCENT_DURATION), ('overall_fuel', Mission.Summary.TOTAL_FUEL_MASS), ], promotes_outputs=[('reg_objective', Mission.Objectives.FUEL)], ) # TODO: All references to self.model. will need to be updated self.model.add_subsystem( 'range_obj', om.ExecComp( 'reg_objective = -actual_range/1000 + ascent_duration/30.', reg_objective={'val': 0.0, 'units': 'unitless'}, ascent_duration={'units': 's', 'shape': 1}, actual_range={'val': self.model.target_range, 'units': 'NM'}, ), promotes_inputs=[ ('actual_range', Mission.Summary.RANGE), ('ascent_duration', Mission.Takeoff.ASCENT_DURATION), ], promotes_outputs=[('reg_objective', Mission.Objectives.RANGE)], ) # Dictionary for default reference values default_ref_values = { 'mass': -5e4, 'hybrid_objective': -5e4, 'fuel_burned': 1e4, 'fuel': 1e4, } # Check if an objective type is specified if objective_type is not None: ref = ref if ref is not None else default_ref_values.get(objective_type, 1) final_phase_name = self.model.regular_phases[-1] if objective_type == 'mass': if self.analysis_scheme is AnalysisScheme.COLLOCATION: self.model.add_objective( f'traj.{final_phase_name}.timeseries.{Dynamic.Vehicle.MASS}', index=-1, ref=ref, ) else: last_phase = self.model.traj._phases.items()[final_phase_name] last_phase.add_objective(Dynamic.Vehicle.MASS, loc='final', ref=ref) elif objective_type == 'time': self.model.add_objective( f'traj.{final_phase_name}.timeseries.time', index=-1, ref=ref ) elif objective_type == 'hybrid_objective': self._add_hybrid_objective(self.model.phase_info) self.model.add_objective('obj_comp.obj') elif objective_type == 'fuel_burned': self.model.add_objective(Mission.Summary.FUEL_BURNED, ref=ref) elif objective_type == 'fuel': self.model.add_objective(Mission.Objectives.FUEL, ref=ref) else: raise ValueError( f"{objective_type} is not a valid objective. 'objective_type' must " 'be one of the following: mass, time, hybrid_objective, ' 'fuel_burned, or fuel' ) else: # If no 'objective_type' is specified, we handle based on 'problem_type' # If 'ref' is not specified, assign a default value ref = ref if ref is not None else 1 if self.model.problem_type is ProblemType.SIZING: self.model.add_objective(Mission.Objectives.FUEL, ref=ref) elif self.model.problem_type is ProblemType.ALTERNATE: self.model.add_objective(Mission.Objectives.FUEL, ref=ref) elif self.model.problem_type is ProblemType.FALLOUT: self.model.add_objective(Mission.Objectives.RANGE, ref=ref) else: raise ValueError(f'{self.model.problem_type} is not a valid problem type.')
[docs] def setup(self, **kwargs): """Lightly wrapped setup() method for the problem.""" # verbosity is not used in this method, but it is understandable that a user # might try and include it (only method that doesn't accept it). Capture it if 'verbosity' in kwargs: kwargs.pop('verbosity') # Use OpenMDAO's model options to pass all options through the system hierarchy. setup_model_options(self, self.aviary_inputs, self.meta_data) # suppress warnings: # "input variable '...' promoted using '*' was already promoted using 'aircraft:*' # TODO: will need to setup warnings on each AviaryGroup() with warnings.catch_warnings(): self.model.options['aviary_options'] = self.aviary_inputs self.model.options['aviary_metadata'] = self.meta_data self.model.options['phase_info'] = self.model.phase_info warnings.simplefilter('ignore', om.OpenMDAOWarning) warnings.simplefilter('ignore', om.PromotionWarning) super().setup(**kwargs)
[docs] def set_initial_guesses(self, parent_prob=None, parent_prefix='', verbosity=None): """ Call `set_val` on the trajectory for states and controls to seed the problem with reasonable initial guesses. This is especially important for collocation methods. This method first identifies all phases in the trajectory then loops over each phase. Specific initial guesses are added depending on the phase and mission method. Cruise is treated as a special phase for GASP-based missions because it is an AnalyticPhase in Dymos. For this phase, we handle the initial guesses first separately and continue to the next phase after that. For other phases, we set the initial guesses for states and controls according to the information available in the 'initial_guesses' attribute of the phase. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF self.model.set_initial_guesses( parent_prob=parent_prob, parent_prefix=parent_prefix, verbosity=verbosity, )
[docs] def run_aviary_problem( self, record_filename='problem_history.db', optimization_history_filename=None, restart_filename=None, suppress_solver_print=True, run_driver=True, simulate=False, make_plots=True, verbosity=None, ): """ This function actually runs the Aviary problem, which could be a simulation, optimization, or a driver execution, depending on the arguments provided. Parameters ---------- record_filename : str, optional The name of the database file where the solutions are to be recorded. The default is "problem_history.db". optimization_history_filename : str, None The name of the database file where the driver iterations are to be recorded. The default is None. restart_filename : str, optional The name of the file that contains previously computed solutions which are to be used as starting points for this run. If it is None (default), no restart file will be used. suppress_solver_print : bool, optional If True (default), all solvers' print statements will be suppressed. Useful for deeply nested models with multiple solvers so the print statements don't overwhelm the output. run_driver : bool, optional If True (default), the driver (aka optimizer) will be executed. If False, the problem will be run through one pass -- equivalent to OpenMDAO's `run_model` behavior. simulate : bool, optional If True, an explicit Dymos simulation will be performed. The default is False. make_plots : bool, optional If True (default), Dymos html plots will be generated as part of the output. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF if verbosity >= Verbosity.VERBOSE: # VERBOSE, DEBUG self.final_setup() with open('input_list.txt', 'w') as outfile: self.model.list_inputs(out_stream=outfile) if suppress_solver_print: self.set_solver_print(level=0) if optimization_history_filename: recorder = om.SqliteRecorder(optimization_history_filename) self.driver.add_recorder(recorder) # and run mission, and dynamics if run_driver: failed = dm.run_problem( self, run_driver=run_driver, simulate=simulate, make_plots=make_plots, solution_record_file=record_filename, restart=restart_filename, ) # TODO this is only used in a single test. Either self.problem_ran_successfully # should be removed, or rework this option to be more helpful (store # entire "failed" object?) and implement more rigorously in benchmark # tests if self.analysis_scheme is AnalysisScheme.SHOOTING: self.problem_ran_successfully = not failed else: if failed.exit_status == 'FAIL': self.problem_ran_successfully = False else: self.problem_ran_successfully = True # Manually print out a failure message for low verbosity modes that suppress # optimizer printouts, which may include the results message. Assumes success, # alerts user on a failure if ( not self.problem_ran_successfully and verbosity <= Verbosity.BRIEF # QUIET, BRIEF ): warnings.warn('\nAviary run failed. See the dashboard for more details.\n') else: # prevent UserWarning that is displayed when an event is triggered warnings.filterwarnings('ignore', category=UserWarning) # TODO failed doesn't exist for run_model(), no return from method failed = self.run_model() warnings.filterwarnings('default', category=UserWarning) # update n2 diagram after run. outdir = Path(self.get_reports_dir(force=True)) outfile = os.path.join(outdir, 'n2.html') om.n2( self, outfile=outfile, show_browser=False, ) if verbosity >= Verbosity.VERBOSE: # VERBOSE, DEBUG with open('output_list.txt', 'w') as outfile: self.model.list_outputs(out_stream=outfile) self.problem_ran_successfully = not failed
[docs] def alternate_mission( self, run_mission=True, json_filename='sizing_problem.json', num_first=None, num_business=None, num_tourist=None, num_pax=None, wing_cargo=None, misc_cargo=None, cargo_mass=None, mission_range=None, phase_info=None, verbosity=None, ): """ This function runs an alternate mission based on a sizing mission output. Parameters ---------- run_mission : bool Flag to determine whether to run the mission before returning the problem object. json_filename : str Name of the file that the sizing mission has been saved to. mission_range : float, optional Target range for the fallout mission. payload_mass : float, optional Mass of the payload for the mission. phase_info : dict, optional Dictionary containing the phases and their required parameters. verbosity : Verbosity or int, optional Controls the level of printouts for this method. If None, uses the value of Settings.VERBOSITY in provided aircraft data. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF # TODO: these self.aviary_inputs methods will need to be updated mass_method = self.aviary_inputs.get_val(Settings.MASS_METHOD) equations_of_motion = self.aviary_inputs.get_val(Settings.EQUATIONS_OF_MOTION) if mass_method == LegacyCode.FLOPS: if num_first is None or num_business is None or num_tourist is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn( 'Incomplete PAX numbers for FLOPS fallout - assume same as design' ) num_first = self.aviary_inputs.get_val(Aircraft.CrewPayload.Design.NUM_FIRST_CLASS) num_business = self.aviary_inputs.get_val( Aircraft.CrewPayload.Design.NUM_BUSINESS_CLASS ) num_tourist = self.aviary_inputs.get_val( Aircraft.CrewPayload.Design.NUM_TOURIST_CLASS ) if wing_cargo is None or misc_cargo is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn( 'Incomplete Cargo masses for FLOPS fallout - assume same as design' ) wing_cargo = self.aviary_inputs.get_val(Aircraft.CrewPayload.WING_CARGO, 'lbm') misc_cargo = self.aviary_inputs.get_val(Aircraft.CrewPayload.MISC_CARGO, 'lbm') num_pax = cargo_mass = 0 elif mass_method == LegacyCode.GASP: if num_pax is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn('Unspecified PAX number for GASP fallout - assume same as design') num_pax = self.aviary_inputs.get_val(Aircraft.CrewPayload.Design.NUM_PASSENGERS) if cargo_mass is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn('Unspecified Cargo mass for GASP fallout - assume same as design') cargo_mass = self.get_val(Aircraft.CrewPayload.CARGO_MASS, 'lbm') num_first = num_business = num_tourist = wing_cargo = misc_cargo = 0 if phase_info is None: phase_info = self.model.phase_info if mission_range is None: # mission range is sliced from a column vector numpy array, i.e. it is a len # 1 numpy array mission_range = self.get_val(Mission.Design.RANGE)[0] # gross mass is sliced from a column vector numpy array, i.e. it is a len 1 numpy # array mission_mass = self.get_val(Mission.Design.GROSS_MASS) optimizer = self.driver.options['optimizer'] prob_alternate = _load_off_design( json_filename, ProblemType.ALTERNATE, equations_of_motion, mass_method, phase_info, num_first, num_business, num_tourist, num_pax, wing_cargo, misc_cargo, cargo_mass, mission_range, mission_mass, ) # TODO: All these methods will need to be updated prob_alternate.check_and_preprocess_inputs() prob_alternate.add_pre_mission_systems() prob_alternate.add_phases() prob_alternate.add_post_mission_systems() prob_alternate.link_phases() prob_alternate.add_driver(optimizer, verbosity=verbosity) prob_alternate.add_design_variables() prob_alternate.add_objective() prob_alternate.setup() prob_alternate.set_initial_guesses() if run_mission: prob_alternate.run_aviary_problem(record_filename='alternate_problem_history.db') return prob_alternate
[docs] def fallout_mission( self, run_mission=True, json_filename='sizing_problem.json', num_first=None, num_business=None, num_tourist=None, num_pax=None, wing_cargo=None, misc_cargo=None, cargo_mass=None, mission_mass=None, phase_info=None, verbosity=None, ): """ This function runs a fallout mission based on a sizing mission output. Parameters ---------- run_mission : bool Flag to determine whether to run the mission before returning the problem object. json_filename : str Name of the file that the sizing mission has been saved to. mission_mass : float, optional Takeoff mass for the fallout mission. payload_mass : float, optional Mass of the payload for the mission. phase_info : dict, optional Dictionary containing the phases and their required parameters. verbosity : Verbosity or int, optional Controls the level of printouts for this method. If None, uses the value of Settings.VERBOSITY in provided aircraft data. """ # `self.verbosity` is "true" verbosity for entire run. `verbosity` is verbosity # override for just this method if verbosity is not None: # compatibility with being passed int for verbosity verbosity = Verbosity(verbosity) else: verbosity = self.verbosity # defaults to BRIEF mass_method = self.aviary_inputs.get_val(Settings.MASS_METHOD) equations_of_motion = self.aviary_inputs.get_val(Settings.EQUATIONS_OF_MOTION) if mass_method == LegacyCode.FLOPS: if num_first is None or num_business is None or num_tourist is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn( 'Incomplete PAX numbers for FLOPS fallout - assume same as design' ) num_first = self.aviary_inputs.get_val(Aircraft.CrewPayload.Design.NUM_FIRST_CLASS) num_business = self.aviary_inputs.get_val( Aircraft.CrewPayload.Design.NUM_BUSINESS_CLASS ) num_tourist = self.aviary_inputs.get_val( Aircraft.CrewPayload.Design.NUM_TOURIST_CLASS ) if wing_cargo is None or misc_cargo is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn( 'Incomplete Cargo masses for FLOPS fallout - assume same as design' ) wing_cargo = self.aviary_inputs.get_val(Aircraft.CrewPayload.WING_CARGO, 'lbm') misc_cargo = self.aviary_inputs.get_val(Aircraft.CrewPayload.MISC_CARGO, 'lbm') num_pax = cargo_mass = 0 elif mass_method == LegacyCode.GASP: if num_pax is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn('Unspecified PAX number for GASP fallout - assume same as design') num_pax = self.aviary_inputs.get_val(Aircraft.CrewPayload.Design.NUM_PASSENGERS) if cargo_mass is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn('Unspecified Cargo mass for GASP fallout - assume same as design') cargo_mass = self.get_val(Aircraft.CrewPayload.CARGO_MASS, 'lbm') num_first = num_business = num_tourist = wing_cargo = misc_cargo = 0 if phase_info is None: phase_info = self.model.phase_info if mission_mass is None: # mission mass is sliced from a column vector numpy array, i.e. it is a len 1 # numpy array mission_mass = self.get_val(Mission.Design.GROSS_MASS)[0] optimizer = self.driver.options['optimizer'] prob_fallout = _load_off_design( json_filename, ProblemType.FALLOUT, equations_of_motion, mass_method, phase_info, num_first, num_business, num_tourist, num_pax, wing_cargo, misc_cargo, cargo_mass, None, mission_mass, verbosity=verbosity, ) prob_fallout.check_and_preprocess_inputs() prob_fallout.add_pre_mission_systems() prob_fallout.add_phases() prob_fallout.add_post_mission_systems() prob_fallout.link_phases() prob_fallout.add_driver(optimizer, verbosity=verbosity) prob_fallout.add_design_variables() prob_fallout.add_objective() prob_fallout.setup() prob_fallout.set_initial_guesses() if run_mission: prob_fallout.run_aviary_problem(record_filename='fallout_problem_history.db') return prob_fallout
[docs] def save_sizing_to_json(self, json_filename='sizing_problem.json'): """ This function saves an aviary problem object into a json file. Parameters ---------- aviary_problem : AviaryProblem Aviary problem object optimized for the aircraft design/sizing mission. Assumed to contain aviary_inputs and Mission.Summary.GROSS_MASS json_filename : string User specified name and relative path of json file to save the data into. """ aviary_input_list = [] with open(json_filename, 'w') as jsonfile: # Loop through aviary input datastructure and create a list for data in self.aviary_inputs: (name, (value, units)) = data type_value = type(value) # Get the gross mass value from the sizing problem and add it to input # list if name == Mission.Summary.GROSS_MASS or name == Mission.Design.GROSS_MASS: Mission_Summary_GROSS_MASS_val = self.get_val( Mission.Summary.GROSS_MASS, units=units ) Mission_Summary_GROSS_MASS_val_list = Mission_Summary_GROSS_MASS_val.tolist() value = Mission_Summary_GROSS_MASS_val_list[0] else: # there are different data types we need to handle for conversion to # json format # int, bool, float doesn't need anything special # Convert numpy arrays to lists if type_value == np.ndarray: value = value.tolist() # Lists are fine except if they contain enums or Paths if type_value == list: if isinstance(value[0], Enum) or isinstance(value[0], Path): for i in range(len(value)): value[i] = str(value[i]) # Enums and Paths need converting to a string if isinstance(value, Enum) or isinstance(value, Path): value = str(value) # Append the data to the list aviary_input_list.append([name, value, units, str(type_value)]) # Write the list to a json file json.dump( aviary_input_list, jsonfile, sort_keys=True, indent=4, ensure_ascii=False, ) jsonfile.close()
def _add_hybrid_objective(self, phase_info): phases = list(phase_info.keys()) takeoff_mass = self.aviary_inputs.get_val(Mission.Design.GROSS_MASS, units='lbm') obj_comp = om.ExecComp( f'obj = -final_mass / {takeoff_mass} + final_time / 5.', final_mass={'units': 'lbm'}, final_time={'units': 'h'}, ) self.model.add_subsystem('obj_comp', obj_comp) final_phase_name = phases[-1] self.model.connect( f'traj.{final_phase_name}.timeseries.mass', 'obj_comp.final_mass', src_indices=[-1], ) self.model.connect( f'traj.{final_phase_name}.timeseries.time', 'obj_comp.final_time', src_indices=[-1], ) def _save_to_csv_file(self, filename): with open(filename, 'w', newline='') as csvfile: fieldnames = ['name', 'value', 'units'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) for name, value_units in sorted(self.aviary_inputs): value, units = value_units writer.writerow({'name': name, 'value': value, 'units': units})
def _read_sizing_json(aviary_problem, json_filename): """ This function reads in an aviary problem object from a json file. Parameters ---------- aviary_problem: OpenMDAO Aviary Problem Aviary problem object optimized for the aircraft design/sizing mission. Assumed to contain aviary_inputs and Mission.Summary.GROSS_MASS json_filename: string User specified name and relative path of json file to save the data into Returns ------- Aviary Problem object with updated input values from json file """ # load saved input list from json file with open(json_filename) as json_data_file: loaded_aviary_input_list = json.load(json_data_file) json_data_file.close() # Loop over input list and assign aviary problem input values counter = 0 # list index tracker for inputs in loaded_aviary_input_list: [var_name, var_values, var_units, var_type] = inputs # Initialize some flags to identify enums is_enum = False if var_type == "<class 'list'>": # check if the list contains enums for i in range(len(var_values)): if isinstance(var_values[i], str): if var_values[i].find('<') != -1: # Found a list of enums: set the flag is_enum = True # Manipulate the string to find the value tmp_var_values = var_values[i].split(':')[-1] var_values[i] = ( tmp_var_values.replace('>', '') .replace(']', '') .replace("'", '') .replace(' ', '') ) if is_enum: var_values = convert_strings_to_data(var_values) elif var_type.find('<enum') != -1: # Identify enums and manipulate the string to find the value tmp_var_values = var_values.split(':')[-1] var_values = ( tmp_var_values.replace('>', '').replace(']', '').replace("'", '').replace(' ', '') ) var_values = convert_strings_to_data([var_values]) # Check if the variable is in meta data if var_name in BaseMetaData.keys(): try: aviary_problem.aviary_inputs.set_val( var_name, var_values, units=var_units, meta_data=BaseMetaData ) except BaseException: # Print helpful warning # TODO "FAILURE" implies something more serious, should this be a raised # exception? warnings.warn( f'FAILURE: list_num = {counter}, Input String = {inputs}, Attempted ' f'to set_value({var_name}, {var_values}, {var_units})', ) else: # Not in the MetaData warnings.warn( f'Name not found in MetaData: list_num = {counter}, Input String = ' f'{inputs}, Attempted set_value({var_name}, {var_values}, {var_units})' ) counter = counter + 1 # increment index tracker return aviary_problem def _load_off_design( json_filename, problem_type, equations_of_motion, mass_method, phase_info, num_first, num_business, num_tourist, num_pax, wing_cargo, misc_cargo, cargo_mass, mission_range=None, mission_gross_mass=None, verbosity=Verbosity.BRIEF, ): """ This function loads a sized aircraft, and sets up an aviary problem for a specified off design mission. Parameters ---------- json_filename : str User specified name and relative path of json file containing the sized aircraft data problem_type : ProblemType Alternate or Fallout. Alternate requires mission_range input and fallout requires mission_fuel input equations_of_motion : EquationsOfMotion Which equations of motion will be used for the off-design mission MassMethod : LegacyCode Which legacy code mass method will be used (GASP or FLOPS) phase_info : dict phase_info dictionary for off-design mission num_first : int Number of first class passengers on off-design mission (FLOPS only) num_business : int Number of business class passengers on off-design mission (FLOPS only) num_tourist : int Number of economy class passengers on off-design mission (FLOPS only) num_pax : int Total number of passengers on off-design mission (GASP only) wing_cargo: float Wing-stored cargo mass on off-design mission, in lbm (FLOPS only) misc_cargo : float Miscellaneous cargo mass on off-design mission, in lbm (FLOPS only) cargo_mass : float Total cargo mass on off-design mission, in lbm (GASP only) mission_range : float Total range of off-design mission, in NM mission_gross_mass : float Aircraft takeoff gross mass for off-design mission, in lbm verbosity : Verbosity or list, optional Controls the level of printouts for this method. Returns ------- Aviary Problem object with completed load_inputs() for specified off design mission """ # Initialize a new aviary problem and aviary_input data structure prob = AviaryProblem() prob.aviary_inputs = AviaryValues() prob = _read_sizing_json(prob, json_filename) # Update problem type prob.problem_type = problem_type prob.aviary_inputs.set_val('settings:problem_type', problem_type) prob.aviary_inputs.set_val('settings:equations_of_motion', equations_of_motion) # Setup Payload if mass_method == LegacyCode.FLOPS: prob.aviary_inputs.set_val( Aircraft.CrewPayload.NUM_FIRST_CLASS, num_first, units='unitless' ) prob.aviary_inputs.set_val( Aircraft.CrewPayload.NUM_BUSINESS_CLASS, num_business, units='unitless' ) prob.aviary_inputs.set_val( Aircraft.CrewPayload.NUM_TOURIST_CLASS, num_tourist, units='unitless' ) num_pax = num_first + num_business + num_tourist prob.aviary_inputs.set_val(Aircraft.CrewPayload.MISC_CARGO, misc_cargo, 'lbm') prob.aviary_inputs.set_val(Aircraft.CrewPayload.WING_CARGO, wing_cargo, 'lbm') cargo_mass = misc_cargo + wing_cargo prob.aviary_inputs.set_val(Aircraft.CrewPayload.NUM_PASSENGERS, num_pax, units='unitless') prob.aviary_inputs.set_val(Aircraft.CrewPayload.CARGO_MASS, cargo_mass, 'lbm') if problem_type == ProblemType.ALTERNATE: # Set mission range, aviary will calculate required fuel if mission_range is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG # TODO text says this is an "ERROR" but methods continues to run, this # might be confusion warnings.warn( 'ERROR in _load_off_design - Alternate problem type requested with ' 'no specified Range' ) else: prob.aviary_inputs.set_val(Mission.Design.RANGE, mission_range, units='NM') prob.aviary_inputs.set_val(Mission.Summary.RANGE, mission_range, units='NM') # TODO is there a reason we can't use set_default() to make sure target range exists and # has a value if not already in dictionary? try: phase_info['post_mission']['target_range'] phase_info['post_mission']['target_range'] = (mission_range, 'nmi') except KeyError: warnings.warn('no target range to update') elif problem_type == ProblemType.FALLOUT: # Set mission fuel and calculate gross weight, aviary will calculate range if mission_gross_mass is None: if verbosity > Verbosity.BRIEF: # VERBOSE, DEBUG warnings.warn( 'Error in _load_off_design - Fallout problem type requested with no ' 'specified Gross Mass' ) else: prob.aviary_inputs.set_val(Mission.Summary.GROSS_MASS, mission_gross_mass, units='lbm') # Load inputs prob.load_inputs(prob.aviary_inputs, phase_info) return prob