Source code for aviary.variable_info.functions

from enum import Enum

import numpy as np

import openmdao.api as om
from openmdao.core.component import Component
from openmdao.utils.units import convert_units
import dymos as dm
from dymos.utils.misc import _unspecified

from aviary.utils.aviary_values import AviaryValues
from aviary.variable_info.variables import Aircraft, Settings
from aviary.variable_info.variable_meta_data import _MetaData

# ---------------------------
# Helper functions for setting up inputs/outputs in components
# ---------------------------


[docs] def add_aviary_input(comp, varname, val=None, units=None, desc=None, shape_by_conn=False, meta_data=_MetaData, shape=None): """ This function provides a clean way to add variables from the variable hierarchy into components as Aviary inputs. It takes the standard OpenMDAO inputs of the variable's name, initial value, units, and description, as well as the component which the variable is being added to. Parameters ---------- comp: Component OpenMDAO component to add this variable. varname: str Name of variable. val: float or ndarray Default value for variable. units: str (Optional) when specifying val, units should also be specified. desc: str (Optional) description text for the variable. shape_by_conn: bool Set to True to infer the shape from the connected output. meta_data: dict (Optional) Aviary metadata dictionary. If unspecified, the built-in metadata will be used. shape: tuple (Optional) shape for this input. """ meta = meta_data[varname] # units of None are overwritten with defaults. Overwriting units with None is # unnecessary as it will cause errors down the line if the default is not already # None default_units = meta['units'] if units: input_units = units else: input_units = default_units if desc: input_desc = desc else: input_desc = meta['desc'] if val is None: if shape is None: val = meta['default_value'] if val is None: val = 0.0 else: val = meta['default_value'] if val is None: val = np.zeros(shape) else: val = np.ones(shape) * val # val was not provided but different units were if input_units != default_units: try: # convert the default units to requested units val = convert_units(val, default_units, input_units) except ValueError: raise ValueError( f'The requested units {units} for input {varname} in component ' f'{comp.name} are invalid.' ) comp.add_input(varname, val=val, units=input_units, desc=input_desc, shape_by_conn=shape_by_conn, shape=shape)
[docs] def add_aviary_output(comp, varname, val=None, units=None, desc=None, shape_by_conn=False, meta_data=_MetaData, shape=None): """ This function provides a clean way to add variables from the variable hierarchy into components as Aviary outputs. It takes the standard OpenMDAO inputs of the variable's name, initial value, units, and description, as well as the component which the variable is being added to. Parameters ---------- comp: Component OpenMDAO component to add this variable. varname: str Name of variable. val: float or ndarray (Optional) Default value for variable. If not specified, the value from metadata is used. units: str (Optional) when speficying val, units should also be specified. desc: str (Optional) description text for the variable. shape_by_conn: bool Set to True to infer the shape from the connected output. meta_data: dict (Optional) Aviary metadata dictionary. If unspecified, the built-in metadata will be used. shape: tuple (Optional) shape for this input. """ meta = meta_data[varname] # units of None are overwritten with defaults. Overwriting units with None is # unnecessary as it will cause errors down the line if the default is not already # None default_units = meta['units'] if units: output_units = units else: output_units = default_units if desc: output_desc = desc else: output_desc = meta['desc'] if val is None: if shape is None: val = meta['default_value'] if val is None: val = 0.0 else: val = meta['default_value'] if val is None: val = np.zeros(shape) else: val = np.ones(shape) * val # val was not provided but different units were if output_units != default_units: try: # convert the default units to requested units val = convert_units(val, default_units, output_units) except ValueError: raise ValueError( f'The requested units {units} for output {varname} in component ' f'{comp.name} are invalid.' ) comp.add_output(varname, val=val, units=output_units, desc=output_desc, shape_by_conn=shape_by_conn)
[docs] def units_setter(opt_meta, value): """ Check and convert new units tuple into Parameters ---------- opt_meta : dict Dictionary of entries for the option. value : any New value for the option. Returns ------- any Post processed value to set into the option. """ new_val, new_units = value old_val, units = opt_meta['val'] converted_val = convert_units(new_val, new_units, units) return (converted_val, units)
[docs] def int_enum_setter(opt_meta, value): """ Support setting the option with a string or int and converting it to the proper enum object. Parameters ---------- opt_meta : dict Dictionary of entries for the option. value : any New value for the option. Returns ------- any Post processed value to set into the option. """ types = opt_meta['types'] for type_ in types: if type_ not in (list, np.ndarray): enum_class = type_ break if isinstance(value, Enum): return value elif isinstance(value, int): return enum_class(value) elif isinstance(value, str): return getattr(enum_class, value) elif isinstance(value, list): values = [] for val in value: if isinstance(val, Enum): values.append(val) elif isinstance(val, int): values.append(enum_class(val)) elif isinstance(val, str): values.append(getattr(enum_class, val)) else: break else: return values msg = f"Value '{value}' not valid for option with types {enum_class}" raise TypeError(msg)
[docs] def add_aviary_option(comp, name, val=_unspecified, units=None, desc=None, meta_data=_MetaData): """ Adds an option to an Aviary component. Default values from the metadata are used unless a new value is specified. Parameters ---------- comp: Component OpenMDAO component to add this option. name: str Name of variable. val: float or ndarray (Optional) Default value for option. If not specified, the value from metadata is used. desc: str (Optional) description text for the variable. units: str (Optional) OpenMDAO units string. This can be specified for variables with units. meta_data: dict (Optional) Aviary metadata dictionary. If unspecified, the built-in metadata will be used. """ meta = meta_data[name] # units of None are overwritten with defaults. Overwriting units with None is # unnecessary as it will cause errors down the line if the default is not already # None default_units = meta['units'] if units: option_units = units else: option_units = default_units if not desc: desc = meta['desc'] types = meta['types'] if meta['multivalue']: if isinstance(types, tuple): types = (list, *types) else: types = (list, types) if val is _unspecified: val = meta['default_value'] # val was not provided but different units were if option_units != default_units: try: # convert the default units to requested units val = convert_units(val, default_units, option_units) except ValueError: raise ValueError( f'The requested units {units} for output {name} in component ' f'{comp.name} are invalid.' ) if units not in [None, 'unitless']: types = tuple comp.options.declare(name, default=(val, units), types=types, desc=desc, set_function=units_setter) elif isinstance(val, Enum): comp.options.declare(name, default=val, types=types, desc=desc, set_function=int_enum_setter) else: comp.options.declare(name, default=val, types=types, desc=desc)
[docs] def override_aviary_vars(group: om.Group, aviary_inputs: AviaryValues, manual_overrides=None, external_overrides=None): ''' This function provides the capability to override output variables with variables from the aviary_inputs input. The user can also optionally provide the names of variables that they would like to override manually. (Manual overriding is simply suppressing the promotion of the variable to make way for another output variable of the same name, or to create an unconnected input elsewhere.) ''' def name_filter(name): return "aircraft:" in name or "mission:" in name if not manual_overrides: manual_overrides = [] if not external_overrides: external_overrides = [] # first need to make a list of all the inputs that anyone needs # so that we can keep track of any unclaimed inputs all_inputs = set() # use a set to avoid duplicates for system in group.system_iter(): meta = system.get_io_metadata(iotypes=("input",)) in_var_names = meta.keys() for name in in_var_names: all_inputs.add(name) overridden_outputs = [] external_overridden_outputs = [] for comp in group.system_iter(typ=Component): # get a list of the variables to use out_var_names = list(filter(name_filter, comp.get_io_metadata( iotypes=("output",), return_rel_names=False))) # get a list of the metadata associated with each variable out_var_metadata = comp.get_io_metadata( iotypes=("output",), return_rel_names=False) in_var_names = filter(name_filter, comp.get_io_metadata(iotypes=("input", ))) comp_promoted_outputs = [] for abs_name in out_var_names: name = out_var_metadata[abs_name]['prom_name'] if abs_name in manual_overrides: # These are handled outside of this function. continue elif name in external_overrides: # Overridden variables are given a new name comp_promoted_outputs.append((name, f"EXTERNAL_OVERRIDE:{name}")) external_overridden_outputs.append(name) continue # don't promote it elif name in aviary_inputs: val, units = aviary_inputs.get_item(name) if name in all_inputs: group.set_input_defaults(name, val=val, units=units) # Overridden variables are given a new name comp_promoted_outputs.append((name, f"AUTO_OVERRIDE:{name}")) overridden_outputs.append(name) continue # don't promote it # This variable is not overriden, so the output is promoted. comp_promoted_outputs.append(name) # NOTE Always promoting all inputs into the "global" namespace # so its VERY important that we enforce all inputs names exist in the master # variable list rel_path = comp.pathname[len(group.pathname):].lstrip(".") if "." in rel_path: # comp is in a subgroup. We must find it. sub_path = ".".join(rel_path.split(".")[:-1]) sub = group._get_subsystem(sub_path) sub.promotes(comp.name, inputs=in_var_names, outputs=comp_promoted_outputs) else: group.promotes(comp.name, inputs=in_var_names, outputs=comp_promoted_outputs) if overridden_outputs: if aviary_inputs.get_val(Settings.VERBOSITY).value >= 1: # Verbosity.BRIEF print("\nThe following variables have been overridden:") for prom_name in sorted(overridden_outputs): val, units = aviary_inputs.get_item(prom_name) print(f" '{prom_name} {val} {units}") if external_overridden_outputs: if aviary_inputs.get_val(Settings.VERBOSITY).value >= 1: print("\nThe following variables have been overridden by an external subsystem:") for prom_name in sorted(external_overridden_outputs): # do not print values because they will be updated by an external subsystem later. print(f" '{prom_name}") return overridden_outputs
[docs] def setup_trajectory_params( model: om.Group, traj: dm.Trajectory, aviary_variables: AviaryValues, phases=['climb', 'cruise', 'descent'], variables_to_add=None, meta_data=_MetaData, external_parameters={}, ): """ This function smoothly sorts through the aviary variables which are being used in the trajectory, and for the variables which are not options it adds them as a parameter of the trajectory. """ # TODO: variables_to_add is required, so should be an arg, not a kwarg. if variables_to_add is None: variables_to_add = [] # Step 1: Initialize a dictionary to hold parameters and their associated phases parameters_with_phases = {} # Step 2: Loop through external_parameters to populate the dictionary for phase_name, parameter_dict in external_parameters.items(): for key in parameter_dict.keys(): if key not in parameters_with_phases: parameters_with_phases[key] = [] parameters_with_phases[key].append(phase_name) # Step 3: Loop through the collected parameters and call traj.add_parameter already_added = [] for key, phases in parameters_with_phases.items(): # Assuming the kwargs are the same for shared parameters kwargs = external_parameters[phases[0]][key] targets = {phase: [key] for phase in phases} traj.add_parameter( key, **kwargs, targets=targets ) model.promotes('traj', inputs=[(f'parameters:{key}', key)]) already_added.append(key) # Process the core mission inputs last, because some of them might have already # been covered by the phase builders. # TODO: As we use more builders, we may reach the point where we don't need # to do these anymore. for key in sorted(variables_to_add): if key in already_added: continue meta = meta_data[key] if not meta['option']: val = meta['default_value'] if val is None: val = _unspecified units = meta['units'] if key in aviary_variables: try: val = aviary_variables.get_val(key, units) except TypeError: val = aviary_variables.get_val(key) # TODO temp line to ignore dynamic mission variables, will not work # if names change to 'dynamic:mission:*' if ':' not in key: continue traj.add_parameter( key, opt=False, units=units, val=val, static_target=True, targets={phase_name: [key] for phase_name in phases}) model.promotes('traj', inputs=[(f'parameters:{key}', key)]) return traj
[docs] def get_units(key, meta_data=None) -> str: """ Returns the units for the specified variable as defined in the MetaData. Parameters ---------- key: str Name of the variable meta_data : dict Dictionary containing metadata for the variable. If None, Aviary's built-in metadata will be used. """ if meta_data is None: meta_data = _MetaData return meta_data[key]['units']
[docs] def extract_options(aviary_inputs: AviaryValues, metadata=_MetaData) -> dict: """ Extract a dictionary of options from the given aviary_inputs. Parameters ---------- aviary_inputs : AviaryValues Instance of AviaryValues containing all initial values. meta_data : dict (Optional) Dictionary of aircraft metadata. Uses Aviary's built-in metadata by default. Returns ------- dict Dictionary of option names and values. """ options = {} for key, meta in metadata.items(): if key not in aviary_inputs: continue if not meta['option']: continue val, units = aviary_inputs.get_item(key) meta_units = meta['units'] if meta_units == 'unitless' or meta_units is None: options[key] = val else: # Implement as (quanitity, unit) options[key] = (val, units) return options
[docs] def setup_model_options(prob: om.Problem, aviary_inputs: AviaryValues, meta_data=_MetaData, engine_models=None, prefix=''): """ Setup the correct model options for an aviary problem. Parameters ---------- prob: Problem OpenMDAO problem prior to setup. aviary_inputs : AviaryValues Instance of AviaryValues containing all initial values. meta_data : dict (Optional) Dictionary of aircraft metadata. Uses Aviary's built-in metadata by default. engine_models : List of EngineModels or None (Optional) Engine models prefix : str Prefix for model options. Used for multi-mission. """ # Use OpenMDAO's model options to pass all options through the system hierarchy. prob.model_options[f'{prefix}*'] = extract_options(aviary_inputs, meta_data) # Multi-engines need to index into their options. try: num_engine_models = len(aviary_inputs.get_val(Aircraft.Engine.NUM_ENGINES)) except KeyError: # No engine data. return if num_engine_models > 1: if engine_models is None: engine_models = prob.engine_builders for idx in range(num_engine_models): eng_name = engine_models[idx].name # TODO: For future flexibility, need to tag the required engine options. opt_names = [ Aircraft.Engine.SCALE_PERFORMANCE, Aircraft.Engine.SUBSONIC_FUEL_FLOW_SCALER, Aircraft.Engine.SUPERSONIC_FUEL_FLOW_SCALER, Aircraft.Engine.FUEL_FLOW_SCALER_CONSTANT_TERM, Aircraft.Engine.FUEL_FLOW_SCALER_LINEAR_TERM, ] opt_names_units = [ Aircraft.Engine.REFERENCE_SLS_THRUST, Aircraft.Engine.CONSTANT_FUEL_CONSUMPTION, ] opts = {} for key in opt_names: opts[key] = aviary_inputs.get_item(key)[0][idx] for key in opt_names_units: val, units = aviary_inputs.get_item(key) opts[key] = (val[idx], units) path = f"{prefix}*core_propulsion.{eng_name}*" prob.model_options[path] = opts