from enum import Enum
import numpy as np
import openmdao.api as om
from openmdao.core.component import Component
from openmdao.utils.units import convert_units
import dymos as dm
from dymos.utils.misc import _unspecified
from aviary.utils.aviary_values import AviaryValues
from aviary.variable_info.variables import Aircraft, Settings
from aviary.variable_info.variable_meta_data import _MetaData
# ---------------------------
# Helper functions for setting up inputs/outputs in components
# ---------------------------
[docs]
def add_aviary_output(comp, varname, val=None, units=None, desc=None, shape_by_conn=False,
meta_data=_MetaData, shape=None):
"""
This function provides a clean way to add variables from the
variable hierarchy into components as Aviary outputs. It takes
the standard OpenMDAO inputs of the variable's name, initial
value, units, and description, as well as the component which
the variable is being added to.
Parameters
----------
comp: Component
OpenMDAO component to add this variable.
varname: str
Name of variable.
val: float or ndarray
(Optional) Default value for variable. If not specified, the value from metadata
is used.
units: str
(Optional) when speficying val, units should also be specified.
desc: str
(Optional) description text for the variable.
shape_by_conn: bool
Set to True to infer the shape from the connected output.
meta_data: dict
(Optional) Aviary metadata dictionary. If unspecified, the built-in metadata will
be used.
shape: tuple
(Optional) shape for this input.
"""
meta = meta_data[varname]
# units of None are overwritten with defaults. Overwriting units with None is
# unnecessary as it will cause errors down the line if the default is not already
# None
default_units = meta['units']
if units:
output_units = units
else:
output_units = default_units
if desc:
output_desc = desc
else:
output_desc = meta['desc']
if val is None:
if shape is None:
val = meta['default_value']
if val is None:
val = 0.0
else:
val = meta['default_value']
if val is None:
val = np.zeros(shape)
else:
val = np.ones(shape) * val
# val was not provided but different units were
if output_units != default_units:
try:
# convert the default units to requested units
val = convert_units(val, default_units, output_units)
except ValueError:
raise ValueError(
f'The requested units {units} for output {varname} in component '
f'{comp.name} are invalid.'
)
comp.add_output(varname, val=val, units=output_units,
desc=output_desc, shape_by_conn=shape_by_conn)
[docs]
def units_setter(opt_meta, value):
"""
Check and convert new units tuple into
Parameters
----------
opt_meta : dict
Dictionary of entries for the option.
value : any
New value for the option.
Returns
-------
any
Post processed value to set into the option.
"""
new_val, new_units = value
old_val, units = opt_meta['val']
converted_val = convert_units(new_val, new_units, units)
return (converted_val, units)
[docs]
def int_enum_setter(opt_meta, value):
"""
Support setting the option with a string or int and converting it to the
proper enum object.
Parameters
----------
opt_meta : dict
Dictionary of entries for the option.
value : any
New value for the option.
Returns
-------
any
Post processed value to set into the option.
"""
types = opt_meta['types']
for type_ in types:
if type_ not in (list, np.ndarray):
enum_class = type_
break
if isinstance(value, Enum):
return value
elif isinstance(value, int):
return enum_class(value)
elif isinstance(value, str):
return getattr(enum_class, value)
elif isinstance(value, list):
values = []
for val in value:
if isinstance(val, Enum):
values.append(val)
elif isinstance(val, int):
values.append(enum_class(val))
elif isinstance(val, str):
values.append(getattr(enum_class, val))
else:
break
else:
return values
msg = f"Value '{value}' not valid for option with types {enum_class}"
raise TypeError(msg)
[docs]
def add_aviary_option(comp, name, val=_unspecified, units=None, desc=None, meta_data=_MetaData):
"""
Adds an option to an Aviary component. Default values from the metadata are used
unless a new value is specified.
Parameters
----------
comp: Component
OpenMDAO component to add this option.
name: str
Name of variable.
val: float or ndarray
(Optional) Default value for option. If not specified, the value from metadata
is used.
desc: str
(Optional) description text for the variable.
units: str
(Optional) OpenMDAO units string. This can be specified for variables with units.
meta_data: dict
(Optional) Aviary metadata dictionary. If unspecified, the built-in metadata will
be used.
"""
meta = meta_data[name]
# units of None are overwritten with defaults. Overwriting units with None is
# unnecessary as it will cause errors down the line if the default is not already
# None
default_units = meta['units']
if units:
option_units = units
else:
option_units = default_units
if not desc:
desc = meta['desc']
types = meta['types']
if meta['multivalue']:
if isinstance(types, tuple):
types = (list, *types)
else:
types = (list, types)
if val is _unspecified:
val = meta['default_value']
# val was not provided but different units were
if option_units != default_units:
try:
# convert the default units to requested units
val = convert_units(val, default_units, option_units)
except ValueError:
raise ValueError(
f'The requested units {units} for output {name} in component '
f'{comp.name} are invalid.'
)
if units not in [None, 'unitless']:
types = tuple
comp.options.declare(name, default=(val, units),
types=types, desc=desc,
set_function=units_setter)
elif isinstance(val, Enum):
comp.options.declare(name, default=val,
types=types, desc=desc,
set_function=int_enum_setter)
else:
comp.options.declare(name, default=val,
types=types, desc=desc)
[docs]
def override_aviary_vars(group: om.Group, aviary_inputs: AviaryValues,
manual_overrides=None, external_overrides=None):
'''
This function provides the capability to override output variables
with variables from the aviary_inputs input. The user can also
optionally provide the names of variables that they would like to
override manually. (Manual overriding is simply suppressing the
promotion of the variable to make way for another output variable
of the same name, or to create an unconnected input elsewhere.)
'''
def name_filter(name):
return "aircraft:" in name or "mission:" in name
if not manual_overrides:
manual_overrides = []
if not external_overrides:
external_overrides = []
# first need to make a list of all the inputs that anyone needs
# so that we can keep track of any unclaimed inputs
all_inputs = set() # use a set to avoid duplicates
for system in group.system_iter():
meta = system.get_io_metadata(iotypes=("input",))
in_var_names = meta.keys()
for name in in_var_names:
all_inputs.add(name)
overridden_outputs = []
external_overridden_outputs = []
for comp in group.system_iter(typ=Component):
# get a list of the variables to use
out_var_names = list(filter(name_filter, comp.get_io_metadata(
iotypes=("output",), return_rel_names=False)))
# get a list of the metadata associated with each variable
out_var_metadata = comp.get_io_metadata(
iotypes=("output",), return_rel_names=False)
in_var_names = filter(name_filter, comp.get_io_metadata(iotypes=("input", )))
comp_promoted_outputs = []
for abs_name in out_var_names:
name = out_var_metadata[abs_name]['prom_name']
if abs_name in manual_overrides:
# These are handled outside of this function.
continue
elif name in external_overrides:
# Overridden variables are given a new name
comp_promoted_outputs.append((name, f"EXTERNAL_OVERRIDE:{name}"))
external_overridden_outputs.append(name)
continue # don't promote it
elif name in aviary_inputs:
val, units = aviary_inputs.get_item(name)
if name in all_inputs:
group.set_input_defaults(name, val=val, units=units)
# Overridden variables are given a new name
comp_promoted_outputs.append((name, f"AUTO_OVERRIDE:{name}"))
overridden_outputs.append(name)
continue # don't promote it
# This variable is not overriden, so the output is promoted.
comp_promoted_outputs.append(name)
# NOTE Always promoting all inputs into the "global" namespace
# so its VERY important that we enforce all inputs names exist in the master
# variable list
rel_path = comp.pathname[len(group.pathname):].lstrip(".")
if "." in rel_path:
# comp is in a subgroup. We must find it.
sub_path = ".".join(rel_path.split(".")[:-1])
sub = group._get_subsystem(sub_path)
sub.promotes(comp.name, inputs=in_var_names, outputs=comp_promoted_outputs)
else:
group.promotes(comp.name, inputs=in_var_names, outputs=comp_promoted_outputs)
if overridden_outputs:
if aviary_inputs.get_val(Settings.VERBOSITY).value >= 1: # Verbosity.BRIEF
print("\nThe following variables have been overridden:")
for prom_name in sorted(overridden_outputs):
val, units = aviary_inputs.get_item(prom_name)
print(f" '{prom_name} {val} {units}")
if external_overridden_outputs:
if aviary_inputs.get_val(Settings.VERBOSITY).value >= 1:
print("\nThe following variables have been overridden by an external subsystem:")
for prom_name in sorted(external_overridden_outputs):
# do not print values because they will be updated by an external subsystem later.
print(f" '{prom_name}")
return overridden_outputs
[docs]
def setup_trajectory_params(
model: om.Group, traj: dm.Trajectory, aviary_variables: AviaryValues, phases=['climb', 'cruise', 'descent'],
variables_to_add=None, meta_data=_MetaData, external_parameters={},
):
"""
This function smoothly sorts through the aviary variables which
are being used in the trajectory, and for the variables which are
not options it adds them as a parameter of the trajectory.
"""
# TODO: variables_to_add is required, so should be an arg, not a kwarg.
if variables_to_add is None:
variables_to_add = []
# Step 1: Initialize a dictionary to hold parameters and their associated phases
parameters_with_phases = {}
# Step 2: Loop through external_parameters to populate the dictionary
for phase_name, parameter_dict in external_parameters.items():
for key in parameter_dict.keys():
if key not in parameters_with_phases:
parameters_with_phases[key] = []
parameters_with_phases[key].append(phase_name)
# Step 3: Loop through the collected parameters and call traj.add_parameter
already_added = []
for key, phases in parameters_with_phases.items():
# Assuming the kwargs are the same for shared parameters
kwargs = external_parameters[phases[0]][key]
targets = {phase: [key] for phase in phases}
traj.add_parameter(
key,
**kwargs,
targets=targets
)
model.promotes('traj', inputs=[(f'parameters:{key}', key)])
already_added.append(key)
# Process the core mission inputs last, because some of them might have already
# been covered by the phase builders.
# TODO: As we use more builders, we may reach the point where we don't need
# to do these anymore.
for key in sorted(variables_to_add):
if key in already_added:
continue
meta = meta_data[key]
if not meta['option']:
val = meta['default_value']
if val is None:
val = _unspecified
units = meta['units']
if key in aviary_variables:
try:
val = aviary_variables.get_val(key, units)
except TypeError:
val = aviary_variables.get_val(key)
# TODO temp line to ignore dynamic mission variables, will not work
# if names change to 'dynamic:mission:*'
if ':' not in key:
continue
traj.add_parameter(
key,
opt=False,
units=units,
val=val,
static_target=True,
targets={phase_name: [key] for phase_name in phases})
model.promotes('traj', inputs=[(f'parameters:{key}', key)])
return traj
[docs]
def get_units(key, meta_data=None) -> str:
"""
Returns the units for the specified variable as defined in the MetaData.
Parameters
----------
key: str
Name of the variable
meta_data : dict
Dictionary containing metadata for the variable. If None, Aviary's built-in
metadata will be used.
"""
if meta_data is None:
meta_data = _MetaData
return meta_data[key]['units']
[docs]
def setup_model_options(prob: om.Problem, aviary_inputs: AviaryValues,
meta_data=_MetaData, engine_models=None, prefix=''):
"""
Setup the correct model options for an aviary problem.
Parameters
----------
prob: Problem
OpenMDAO problem prior to setup.
aviary_inputs : AviaryValues
Instance of AviaryValues containing all initial values.
meta_data : dict
(Optional) Dictionary of aircraft metadata. Uses Aviary's built-in
metadata by default.
engine_models : List of EngineModels or None
(Optional) Engine models
prefix : str
Prefix for model options. Used for multi-mission.
"""
# Use OpenMDAO's model options to pass all options through the system hierarchy.
prob.model_options[f'{prefix}*'] = extract_options(aviary_inputs,
meta_data)
# Multi-engines need to index into their options.
try:
num_engine_models = len(aviary_inputs.get_val(Aircraft.Engine.NUM_ENGINES))
except KeyError:
# No engine data.
return
if num_engine_models > 1:
if engine_models is None:
engine_models = prob.engine_builders
for idx in range(num_engine_models):
eng_name = engine_models[idx].name
# TODO: For future flexibility, need to tag the required engine options.
opt_names = [
Aircraft.Engine.SCALE_PERFORMANCE,
Aircraft.Engine.SUBSONIC_FUEL_FLOW_SCALER,
Aircraft.Engine.SUPERSONIC_FUEL_FLOW_SCALER,
Aircraft.Engine.FUEL_FLOW_SCALER_CONSTANT_TERM,
Aircraft.Engine.FUEL_FLOW_SCALER_LINEAR_TERM,
]
opt_names_units = [
Aircraft.Engine.REFERENCE_SLS_THRUST,
Aircraft.Engine.CONSTANT_FUEL_CONSUMPTION,
]
opts = {}
for key in opt_names:
opts[key] = aviary_inputs.get_item(key)[0][idx]
for key in opt_names_units:
val, units = aviary_inputs.get_item(key)
opts[key] = (val[idx], units)
path = f"{prefix}*core_propulsion.{eng_name}*"
prob.model_options[path] = opts